MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lactghmga Unicode version

Theorem lactghmga 14784
Description: The converse of galactghm 14783. The uncurrying of a homomorphism into  ( SymGrp `  Y
) is a group action. Thus group actions and group homomorphisms into a symmetric group are essentially equivalent notions. (Contributed by Mario Carneiro, 15-Jan-2015.)
Hypotheses
Ref Expression
lactghmga.x  |-  X  =  ( Base `  G
)
lactghmga.h  |-  H  =  ( SymGrp `  Y )
lactghmga.f  |-  .(+)  =  ( x  e.  X , 
y  e.  Y  |->  ( ( F `  x
) `  y )
)
Assertion
Ref Expression
lactghmga  |-  ( F  e.  ( G  GrpHom  H )  ->  .(+)  e.  ( G  GrpAct  Y ) )
Distinct variable groups:    x, y, F    x, G, y    x, H, y    x, X, y   
x, Y, y
Allowed substitution hints:    .(+) ( x, y)

Proof of Theorem lactghmga
Dummy variables  v  u  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ghmgrp1 14685 . . 3  |-  ( F  e.  ( G  GrpHom  H )  ->  G  e.  Grp )
2 ghmgrp2 14686 . . . 4  |-  ( F  e.  ( G  GrpHom  H )  ->  H  e.  Grp )
3 grpn0 14514 . . . 4  |-  ( H  e.  Grp  ->  H  =/=  (/) )
4 lactghmga.h . . . . . 6  |-  H  =  ( SymGrp `  Y )
5 fvprc 5519 . . . . . 6  |-  ( -.  Y  e.  _V  ->  (
SymGrp `  Y )  =  (/) )
64, 5syl5eq 2327 . . . . 5  |-  ( -.  Y  e.  _V  ->  H  =  (/) )
76necon1ai 2488 . . . 4  |-  ( H  =/=  (/)  ->  Y  e.  _V )
82, 3, 73syl 18 . . 3  |-  ( F  e.  ( G  GrpHom  H )  ->  Y  e.  _V )
91, 8jca 518 . 2  |-  ( F  e.  ( G  GrpHom  H )  ->  ( G  e.  Grp  /\  Y  e. 
_V ) )
10 lactghmga.x . . . . . . . . . . 11  |-  X  =  ( Base `  G
)
11 eqid 2283 . . . . . . . . . . 11  |-  ( Base `  H )  =  (
Base `  H )
1210, 11ghmf 14687 . . . . . . . . . 10  |-  ( F  e.  ( G  GrpHom  H )  ->  F : X
--> ( Base `  H
) )
13 ffvelrn 5663 . . . . . . . . . 10  |-  ( ( F : X --> ( Base `  H )  /\  x  e.  X )  ->  ( F `  x )  e.  ( Base `  H
) )
1412, 13sylan 457 . . . . . . . . 9  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  x  e.  X )  ->  ( F `  x )  e.  ( Base `  H
) )
158adantr 451 . . . . . . . . . 10  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  x  e.  X )  ->  Y  e.  _V )
164, 11elsymgbas 14774 . . . . . . . . . 10  |-  ( Y  e.  _V  ->  (
( F `  x
)  e.  ( Base `  H )  <->  ( F `  x ) : Y -1-1-onto-> Y
) )
1715, 16syl 15 . . . . . . . . 9  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  x  e.  X )  ->  (
( F `  x
)  e.  ( Base `  H )  <->  ( F `  x ) : Y -1-1-onto-> Y
) )
1814, 17mpbid 201 . . . . . . . 8  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  x  e.  X )  ->  ( F `  x ) : Y -1-1-onto-> Y )
19 f1of 5472 . . . . . . . 8  |-  ( ( F `  x ) : Y -1-1-onto-> Y  ->  ( F `  x ) : Y --> Y )
2018, 19syl 15 . . . . . . 7  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  x  e.  X )  ->  ( F `  x ) : Y --> Y )
21 ffvelrn 5663 . . . . . . 7  |-  ( ( ( F `  x
) : Y --> Y  /\  y  e.  Y )  ->  ( ( F `  x ) `  y
)  e.  Y )
2220, 21sylan 457 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  x  e.  X )  /\  y  e.  Y
)  ->  ( ( F `  x ) `  y )  e.  Y
)
2322ralrimiva 2626 . . . . 5  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  x  e.  X )  ->  A. y  e.  Y  ( ( F `  x ) `  y )  e.  Y
)
2423ralrimiva 2626 . . . 4  |-  ( F  e.  ( G  GrpHom  H )  ->  A. x  e.  X  A. y  e.  Y  ( ( F `  x ) `  y )  e.  Y
)
25 lactghmga.f . . . . 5  |-  .(+)  =  ( x  e.  X , 
y  e.  Y  |->  ( ( F `  x
) `  y )
)
2625fmpt2 6191 . . . 4  |-  ( A. x  e.  X  A. y  e.  Y  (
( F `  x
) `  y )  e.  Y  <->  .(+)  : ( X  X.  Y ) --> Y )
2724, 26sylib 188 . . 3  |-  ( F  e.  ( G  GrpHom  H )  ->  .(+)  : ( X  X.  Y ) --> Y )
28 eqid 2283 . . . . . . . . 9  |-  ( 0g
`  G )  =  ( 0g `  G
)
2910, 28grpidcl 14510 . . . . . . . 8  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  X )
301, 29syl 15 . . . . . . 7  |-  ( F  e.  ( G  GrpHom  H )  ->  ( 0g `  G )  e.  X
)
31 fveq2 5525 . . . . . . . . 9  |-  ( x  =  ( 0g `  G )  ->  ( F `  x )  =  ( F `  ( 0g `  G ) ) )
3231fveq1d 5527 . . . . . . . 8  |-  ( x  =  ( 0g `  G )  ->  (
( F `  x
) `  y )  =  ( ( F `
 ( 0g `  G ) ) `  y ) )
33 fveq2 5525 . . . . . . . 8  |-  ( y  =  z  ->  (
( F `  ( 0g `  G ) ) `
 y )  =  ( ( F `  ( 0g `  G ) ) `  z ) )
34 fvex 5539 . . . . . . . 8  |-  ( ( F `  ( 0g
`  G ) ) `
 z )  e. 
_V
3532, 33, 25, 34ovmpt2 5983 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  X  /\  z  e.  Y )  ->  ( ( 0g `  G )  .(+)  z )  =  ( ( F `
 ( 0g `  G ) ) `  z ) )
3630, 35sylan 457 . . . . . 6  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  (
( 0g `  G
)  .(+)  z )  =  ( ( F `  ( 0g `  G ) ) `  z ) )
37 eqid 2283 . . . . . . . . . 10  |-  ( 0g
`  H )  =  ( 0g `  H
)
3828, 37ghmid 14689 . . . . . . . . 9  |-  ( F  e.  ( G  GrpHom  H )  ->  ( F `  ( 0g `  G
) )  =  ( 0g `  H ) )
3938adantr 451 . . . . . . . 8  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  ( F `  ( 0g `  G ) )  =  ( 0g `  H
) )
408adantr 451 . . . . . . . . 9  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  Y  e.  _V )
414symgid 14781 . . . . . . . . 9  |-  ( Y  e.  _V  ->  (  _I  |`  Y )  =  ( 0g `  H
) )
4240, 41syl 15 . . . . . . . 8  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  (  _I  |`  Y )  =  ( 0g `  H
) )
4339, 42eqtr4d 2318 . . . . . . 7  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  ( F `  ( 0g `  G ) )  =  (  _I  |`  Y ) )
4443fveq1d 5527 . . . . . 6  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  (
( F `  ( 0g `  G ) ) `
 z )  =  ( (  _I  |`  Y ) `
 z ) )
45 fvresi 5711 . . . . . . 7  |-  ( z  e.  Y  ->  (
(  _I  |`  Y ) `
 z )  =  z )
4645adantl 452 . . . . . 6  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  (
(  _I  |`  Y ) `
 z )  =  z )
4736, 44, 463eqtrd 2319 . . . . 5  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  (
( 0g `  G
)  .(+)  z )  =  z )
4812ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  F : X --> ( Base `  H
) )
49 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  v  e.  X )
50 ffvelrn 5663 . . . . . . . . . . . 12  |-  ( ( F : X --> ( Base `  H )  /\  v  e.  X )  ->  ( F `  v )  e.  ( Base `  H
) )
5148, 49, 50syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  ( F `  v )  e.  ( Base `  H
) )
528ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  Y  e.  _V )
534, 11elsymgbas 14774 . . . . . . . . . . . 12  |-  ( Y  e.  _V  ->  (
( F `  v
)  e.  ( Base `  H )  <->  ( F `  v ) : Y -1-1-onto-> Y
) )
5452, 53syl 15 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( F `  v
)  e.  ( Base `  H )  <->  ( F `  v ) : Y -1-1-onto-> Y
) )
5551, 54mpbid 201 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  ( F `  v ) : Y -1-1-onto-> Y )
56 f1of 5472 . . . . . . . . . 10  |-  ( ( F `  v ) : Y -1-1-onto-> Y  ->  ( F `  v ) : Y --> Y )
5755, 56syl 15 . . . . . . . . 9  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  ( F `  v ) : Y --> Y )
58 simplr 731 . . . . . . . . 9  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  z  e.  Y )
59 fvco3 5596 . . . . . . . . 9  |-  ( ( ( F `  v
) : Y --> Y  /\  z  e.  Y )  ->  ( ( ( F `
 u )  o.  ( F `  v
) ) `  z
)  =  ( ( F `  u ) `
 ( ( F `
 v ) `  z ) ) )
6057, 58, 59syl2anc 642 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( ( F `  u )  o.  ( F `  v )
) `  z )  =  ( ( F `
 u ) `  ( ( F `  v ) `  z
) ) )
61 simpll 730 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  F  e.  ( G  GrpHom  H ) )
62 simprl 732 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  u  e.  X )
63 eqid 2283 . . . . . . . . . . . 12  |-  ( +g  `  G )  =  ( +g  `  G )
64 eqid 2283 . . . . . . . . . . . 12  |-  ( +g  `  H )  =  ( +g  `  H )
6510, 63, 64ghmlin 14688 . . . . . . . . . . 11  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  u  e.  X  /\  v  e.  X )  ->  ( F `  ( u
( +g  `  G ) v ) )  =  ( ( F `  u ) ( +g  `  H ) ( F `
 v ) ) )
6661, 62, 49, 65syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  ( F `  ( u
( +g  `  G ) v ) )  =  ( ( F `  u ) ( +g  `  H ) ( F `
 v ) ) )
67 ffvelrn 5663 . . . . . . . . . . . 12  |-  ( ( F : X --> ( Base `  H )  /\  u  e.  X )  ->  ( F `  u )  e.  ( Base `  H
) )
6848, 62, 67syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  ( F `  u )  e.  ( Base `  H
) )
694, 11, 64symgov 14777 . . . . . . . . . . 11  |-  ( ( ( F `  u
)  e.  ( Base `  H )  /\  ( F `  v )  e.  ( Base `  H
) )  ->  (
( F `  u
) ( +g  `  H
) ( F `  v ) )  =  ( ( F `  u )  o.  ( F `  v )
) )
7068, 51, 69syl2anc 642 . . . . . . . . . 10  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( F `  u
) ( +g  `  H
) ( F `  v ) )  =  ( ( F `  u )  o.  ( F `  v )
) )
7166, 70eqtrd 2315 . . . . . . . . 9  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  ( F `  ( u
( +g  `  G ) v ) )  =  ( ( F `  u )  o.  ( F `  v )
) )
7271fveq1d 5527 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( F `  (
u ( +g  `  G
) v ) ) `
 z )  =  ( ( ( F `
 u )  o.  ( F `  v
) ) `  z
) )
73 ffvelrn 5663 . . . . . . . . . 10  |-  ( ( ( F `  v
) : Y --> Y  /\  z  e.  Y )  ->  ( ( F `  v ) `  z
)  e.  Y )
7457, 58, 73syl2anc 642 . . . . . . . . 9  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( F `  v
) `  z )  e.  Y )
75 fveq2 5525 . . . . . . . . . . 11  |-  ( x  =  u  ->  ( F `  x )  =  ( F `  u ) )
7675fveq1d 5527 . . . . . . . . . 10  |-  ( x  =  u  ->  (
( F `  x
) `  y )  =  ( ( F `
 u ) `  y ) )
77 fveq2 5525 . . . . . . . . . 10  |-  ( y  =  ( ( F `
 v ) `  z )  ->  (
( F `  u
) `  y )  =  ( ( F `
 u ) `  ( ( F `  v ) `  z
) ) )
78 fvex 5539 . . . . . . . . . 10  |-  ( ( F `  u ) `
 ( ( F `
 v ) `  z ) )  e. 
_V
7976, 77, 25, 78ovmpt2 5983 . . . . . . . . 9  |-  ( ( u  e.  X  /\  ( ( F `  v ) `  z
)  e.  Y )  ->  ( u  .(+)  ( ( F `  v
) `  z )
)  =  ( ( F `  u ) `
 ( ( F `
 v ) `  z ) ) )
8062, 74, 79syl2anc 642 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
u  .(+)  ( ( F `
 v ) `  z ) )  =  ( ( F `  u ) `  (
( F `  v
) `  z )
) )
8160, 72, 803eqtr4d 2325 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( F `  (
u ( +g  `  G
) v ) ) `
 z )  =  ( u  .(+)  ( ( F `  v ) `
 z ) ) )
821ad2antrr 706 . . . . . . . . 9  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  G  e.  Grp )
8310, 63grpcl 14495 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  u  e.  X  /\  v  e.  X )  ->  ( u ( +g  `  G ) v )  e.  X )
8482, 62, 49, 83syl3anc 1182 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
u ( +g  `  G
) v )  e.  X )
85 fveq2 5525 . . . . . . . . . 10  |-  ( x  =  ( u ( +g  `  G ) v )  ->  ( F `  x )  =  ( F `  ( u ( +g  `  G ) v ) ) )
8685fveq1d 5527 . . . . . . . . 9  |-  ( x  =  ( u ( +g  `  G ) v )  ->  (
( F `  x
) `  y )  =  ( ( F `
 ( u ( +g  `  G ) v ) ) `  y ) )
87 fveq2 5525 . . . . . . . . 9  |-  ( y  =  z  ->  (
( F `  (
u ( +g  `  G
) v ) ) `
 y )  =  ( ( F `  ( u ( +g  `  G ) v ) ) `  z ) )
88 fvex 5539 . . . . . . . . 9  |-  ( ( F `  ( u ( +g  `  G
) v ) ) `
 z )  e. 
_V
8986, 87, 25, 88ovmpt2 5983 . . . . . . . 8  |-  ( ( ( u ( +g  `  G ) v )  e.  X  /\  z  e.  Y )  ->  (
( u ( +g  `  G ) v ) 
.(+)  z )  =  ( ( F `  ( u ( +g  `  G ) v ) ) `  z ) )
9084, 58, 89syl2anc 642 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( u ( +g  `  G ) v ) 
.(+)  z )  =  ( ( F `  ( u ( +g  `  G ) v ) ) `  z ) )
91 fveq2 5525 . . . . . . . . . . 11  |-  ( x  =  v  ->  ( F `  x )  =  ( F `  v ) )
9291fveq1d 5527 . . . . . . . . . 10  |-  ( x  =  v  ->  (
( F `  x
) `  y )  =  ( ( F `
 v ) `  y ) )
93 fveq2 5525 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( F `  v
) `  y )  =  ( ( F `
 v ) `  z ) )
94 fvex 5539 . . . . . . . . . 10  |-  ( ( F `  v ) `
 z )  e. 
_V
9592, 93, 25, 94ovmpt2 5983 . . . . . . . . 9  |-  ( ( v  e.  X  /\  z  e.  Y )  ->  ( v  .(+)  z )  =  ( ( F `
 v ) `  z ) )
9649, 58, 95syl2anc 642 . . . . . . . 8  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
v  .(+)  z )  =  ( ( F `  v ) `  z
) )
9796oveq2d 5874 . . . . . . 7  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
u  .(+)  ( v  .(+)  z ) )  =  ( u  .(+)  ( ( F `  v ) `  z ) ) )
9881, 90, 973eqtr4d 2325 . . . . . 6  |-  ( ( ( F  e.  ( G  GrpHom  H )  /\  z  e.  Y )  /\  ( u  e.  X  /\  v  e.  X
) )  ->  (
( u ( +g  `  G ) v ) 
.(+)  z )  =  ( u  .(+)  ( v 
.(+)  z ) ) )
9998ralrimivva 2635 . . . . 5  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  A. u  e.  X  A. v  e.  X  ( (
u ( +g  `  G
) v )  .(+)  z )  =  ( u 
.(+)  ( v  .(+)  z ) ) )
10047, 99jca 518 . . . 4  |-  ( ( F  e.  ( G 
GrpHom  H )  /\  z  e.  Y )  ->  (
( ( 0g `  G )  .(+)  z )  =  z  /\  A. u  e.  X  A. v  e.  X  (
( u ( +g  `  G ) v ) 
.(+)  z )  =  ( u  .(+)  ( v 
.(+)  z ) ) ) )
101100ralrimiva 2626 . . 3  |-  ( F  e.  ( G  GrpHom  H )  ->  A. z  e.  Y  ( (
( 0g `  G
)  .(+)  z )  =  z  /\  A. u  e.  X  A. v  e.  X  ( (
u ( +g  `  G
) v )  .(+)  z )  =  ( u 
.(+)  ( v  .(+)  z ) ) ) )
10227, 101jca 518 . 2  |-  ( F  e.  ( G  GrpHom  H )  ->  (  .(+)  : ( X  X.  Y
) --> Y  /\  A. z  e.  Y  (
( ( 0g `  G )  .(+)  z )  =  z  /\  A. u  e.  X  A. v  e.  X  (
( u ( +g  `  G ) v ) 
.(+)  z )  =  ( u  .(+)  ( v 
.(+)  z ) ) ) ) )
10310, 63, 28isga 14745 . 2  |-  (  .(+)  e.  ( G  GrpAct  Y )  <-> 
( ( G  e. 
Grp  /\  Y  e.  _V )  /\  (  .(+)  : ( X  X.  Y ) --> Y  /\  A. z  e.  Y  ( ( ( 0g `  G )  .(+)  z )  =  z  /\  A. u  e.  X  A. v  e.  X  (
( u ( +g  `  G ) v ) 
.(+)  z )  =  ( u  .(+)  ( v 
.(+)  z ) ) ) ) ) )
1049, 102, 103sylanbrc 645 1  |-  ( F  e.  ( G  GrpHom  H )  ->  .(+)  e.  ( G  GrpAct  Y ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   _Vcvv 2788   (/)c0 3455    _I cid 4304    X. cxp 4687    |` cres 4691    o. ccom 4693   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858    e. cmpt2 5860   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Grpcgrp 14362    GrpHom cghm 14680    GrpAct cga 14743   SymGrpcsymg 14769
This theorem is referenced by:  symgga  14786
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-tset 13227  df-0g 13404  df-mnd 14367  df-grp 14489  df-ghm 14681  df-ga 14744  df-symg 14770
  Copyright terms: Public domain W3C validator