MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latasymb Structured version   Unicode version

Theorem latasymb 14483
Description: A lattice ordering is asymetric. (eqss 3363 analog.) (Contributed by NM, 22-Oct-2011.)
Hypotheses
Ref Expression
latref.b  |-  B  =  ( Base `  K
)
latref.l  |-  .<_  =  ( le `  K )
Assertion
Ref Expression
latasymb  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .<_  Y  /\  Y  .<_  X )  <-> 
X  =  Y ) )

Proof of Theorem latasymb
StepHypRef Expression
1 latpos 14478 . 2  |-  ( K  e.  Lat  ->  K  e.  Poset )
2 latref.b . . 3  |-  B  =  ( Base `  K
)
3 latref.l . . 3  |-  .<_  =  ( le `  K )
42, 3posasymb 14409 . 2  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  (
( X  .<_  Y  /\  Y  .<_  X )  <->  X  =  Y ) )
51, 4syl3an1 1217 1  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .<_  Y  /\  Y  .<_  X )  <-> 
X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4212   ` cfv 5454   Basecbs 13469   lecple 13536   Posetcpo 14397   Latclat 14474
This theorem is referenced by:  latasym  14484  latasymd  14486  lubun  14550  lubunNEW  29771  cmtbr4N  30053  cvlexchb1  30128  hlateq  30196  cvratlem  30218  cvrat3  30239  pmap11  30559  cdleme50eq  31338  dia11N  31846  dib11N  31958  dih11  32063
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-nul 4338
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-iota 5418  df-fv 5462  df-ov 6084  df-poset 14403  df-lat 14475
  Copyright terms: Public domain W3C validator