MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latdisdlem Unicode version

Theorem latdisdlem 14570
Description: Lemma for latdisd 14571. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
latdisd.b  |-  B  =  ( Base `  K
)
latdisd.j  |-  .\/  =  ( join `  K )
latdisd.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
latdisdlem  |-  ( K  e.  Lat  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  .\/  ( v 
./\  w ) )  =  ( ( u 
.\/  v )  ./\  ( u  .\/  w ) )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y  .\/  z
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  z ) ) ) )
Distinct variable groups:    v, u, w, x, y, z, K   
u, B, v, w, x, y, z    u,  .\/ , v, w, x, y, z    u,  ./\ , v, w, x, y, z

Proof of Theorem latdisdlem
StepHypRef Expression
1 latdisd.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
2 latdisd.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
31, 2latmcl 14435 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  x  e.  B  /\  y  e.  B )  ->  ( x  ./\  y
)  e.  B )
433adant3r3 1164 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  ./\  y )  e.  B )
5 simpr1 963 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  x  e.  B )
6 simpr3 965 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  z  e.  B )
7 oveq1 6047 . . . . . . . . 9  |-  ( u  =  ( x  ./\  y )  ->  (
u  .\/  ( v  ./\  w ) )  =  ( ( x  ./\  y )  .\/  (
v  ./\  w )
) )
8 oveq1 6047 . . . . . . . . . 10  |-  ( u  =  ( x  ./\  y )  ->  (
u  .\/  v )  =  ( ( x 
./\  y )  .\/  v ) )
9 oveq1 6047 . . . . . . . . . 10  |-  ( u  =  ( x  ./\  y )  ->  (
u  .\/  w )  =  ( ( x 
./\  y )  .\/  w ) )
108, 9oveq12d 6058 . . . . . . . . 9  |-  ( u  =  ( x  ./\  y )  ->  (
( u  .\/  v
)  ./\  ( u  .\/  w ) )  =  ( ( ( x 
./\  y )  .\/  v )  ./\  (
( x  ./\  y
)  .\/  w )
) )
117, 10eqeq12d 2418 . . . . . . . 8  |-  ( u  =  ( x  ./\  y )  ->  (
( u  .\/  (
v  ./\  w )
)  =  ( ( u  .\/  v ) 
./\  ( u  .\/  w ) )  <->  ( (
x  ./\  y )  .\/  ( v  ./\  w
) )  =  ( ( ( x  ./\  y )  .\/  v
)  ./\  ( (
x  ./\  y )  .\/  w ) ) ) )
12 oveq1 6047 . . . . . . . . . 10  |-  ( v  =  x  ->  (
v  ./\  w )  =  ( x  ./\  w ) )
1312oveq2d 6056 . . . . . . . . 9  |-  ( v  =  x  ->  (
( x  ./\  y
)  .\/  ( v  ./\  w ) )  =  ( ( x  ./\  y )  .\/  (
x  ./\  w )
) )
14 oveq2 6048 . . . . . . . . . 10  |-  ( v  =  x  ->  (
( x  ./\  y
)  .\/  v )  =  ( ( x 
./\  y )  .\/  x ) )
1514oveq1d 6055 . . . . . . . . 9  |-  ( v  =  x  ->  (
( ( x  ./\  y )  .\/  v
)  ./\  ( (
x  ./\  y )  .\/  w ) )  =  ( ( ( x 
./\  y )  .\/  x )  ./\  (
( x  ./\  y
)  .\/  w )
) )
1613, 15eqeq12d 2418 . . . . . . . 8  |-  ( v  =  x  ->  (
( ( x  ./\  y )  .\/  (
v  ./\  w )
)  =  ( ( ( x  ./\  y
)  .\/  v )  ./\  ( ( x  ./\  y )  .\/  w
) )  <->  ( (
x  ./\  y )  .\/  ( x  ./\  w
) )  =  ( ( ( x  ./\  y )  .\/  x
)  ./\  ( (
x  ./\  y )  .\/  w ) ) ) )
17 oveq2 6048 . . . . . . . . . 10  |-  ( w  =  z  ->  (
x  ./\  w )  =  ( x  ./\  z ) )
1817oveq2d 6056 . . . . . . . . 9  |-  ( w  =  z  ->  (
( x  ./\  y
)  .\/  ( x  ./\  w ) )  =  ( ( x  ./\  y )  .\/  (
x  ./\  z )
) )
19 oveq2 6048 . . . . . . . . . 10  |-  ( w  =  z  ->  (
( x  ./\  y
)  .\/  w )  =  ( ( x 
./\  y )  .\/  z ) )
2019oveq2d 6056 . . . . . . . . 9  |-  ( w  =  z  ->  (
( ( x  ./\  y )  .\/  x
)  ./\  ( (
x  ./\  y )  .\/  w ) )  =  ( ( ( x 
./\  y )  .\/  x )  ./\  (
( x  ./\  y
)  .\/  z )
) )
2118, 20eqeq12d 2418 . . . . . . . 8  |-  ( w  =  z  ->  (
( ( x  ./\  y )  .\/  (
x  ./\  w )
)  =  ( ( ( x  ./\  y
)  .\/  x )  ./\  ( ( x  ./\  y )  .\/  w
) )  <->  ( (
x  ./\  y )  .\/  ( x  ./\  z
) )  =  ( ( ( x  ./\  y )  .\/  x
)  ./\  ( (
x  ./\  y )  .\/  z ) ) ) )
2211, 16, 21rspc3v 3021 . . . . . . 7  |-  ( ( ( x  ./\  y
)  e.  B  /\  x  e.  B  /\  z  e.  B )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  .\/  ( v  ./\  w
) )  =  ( ( u  .\/  v
)  ./\  ( u  .\/  w ) )  -> 
( ( x  ./\  y )  .\/  (
x  ./\  z )
)  =  ( ( ( x  ./\  y
)  .\/  x )  ./\  ( ( x  ./\  y )  .\/  z
) ) ) )
234, 5, 6, 22syl3anc 1184 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  .\/  ( v 
./\  w ) )  =  ( ( u 
.\/  v )  ./\  ( u  .\/  w ) )  ->  ( (
x  ./\  y )  .\/  ( x  ./\  z
) )  =  ( ( ( x  ./\  y )  .\/  x
)  ./\  ( (
x  ./\  y )  .\/  z ) ) ) )
2423imp 419 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  (
( x  ./\  y
)  .\/  ( x  ./\  z ) )  =  ( ( ( x 
./\  y )  .\/  x )  ./\  (
( x  ./\  y
)  .\/  z )
) )
25 simpl 444 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  K  e.  Lat )
26 latdisd.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
271, 26latjcom 14443 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  ./\  y )  e.  B  /\  x  e.  B )  ->  (
( x  ./\  y
)  .\/  x )  =  ( x  .\/  ( x  ./\  y ) ) )
2825, 4, 5, 27syl3anc 1184 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  ./\  y
)  .\/  x )  =  ( x  .\/  ( x  ./\  y ) ) )
291, 26, 2latabs1 14471 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .\/  (
x  ./\  y )
)  =  x )
30293adant3r3 1164 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  .\/  ( x  ./\  y ) )  =  x )
3128, 30eqtrd 2436 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  ./\  y
)  .\/  x )  =  x )
321, 26latjcom 14443 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( x  ./\  y )  e.  B  /\  z  e.  B )  ->  (
( x  ./\  y
)  .\/  z )  =  ( z  .\/  ( x  ./\  y ) ) )
3325, 4, 6, 32syl3anc 1184 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  ./\  y
)  .\/  z )  =  ( z  .\/  ( x  ./\  y ) ) )
3431, 33oveq12d 6058 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( ( x  ./\  y )  .\/  x
)  ./\  ( (
x  ./\  y )  .\/  z ) )  =  ( x  ./\  (
z  .\/  ( x  ./\  y ) ) ) )
3534adantr 452 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  (
( ( x  ./\  y )  .\/  x
)  ./\  ( (
x  ./\  y )  .\/  z ) )  =  ( x  ./\  (
z  .\/  ( x  ./\  y ) ) ) )
36 simpr2 964 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  y  e.  B )
37 oveq1 6047 . . . . . . . . . . 11  |-  ( u  =  z  ->  (
u  .\/  ( v  ./\  w ) )  =  ( z  .\/  (
v  ./\  w )
) )
38 oveq1 6047 . . . . . . . . . . . 12  |-  ( u  =  z  ->  (
u  .\/  v )  =  ( z  .\/  v ) )
39 oveq1 6047 . . . . . . . . . . . 12  |-  ( u  =  z  ->  (
u  .\/  w )  =  ( z  .\/  w ) )
4038, 39oveq12d 6058 . . . . . . . . . . 11  |-  ( u  =  z  ->  (
( u  .\/  v
)  ./\  ( u  .\/  w ) )  =  ( ( z  .\/  v )  ./\  (
z  .\/  w )
) )
4137, 40eqeq12d 2418 . . . . . . . . . 10  |-  ( u  =  z  ->  (
( u  .\/  (
v  ./\  w )
)  =  ( ( u  .\/  v ) 
./\  ( u  .\/  w ) )  <->  ( z  .\/  ( v  ./\  w
) )  =  ( ( z  .\/  v
)  ./\  ( z  .\/  w ) ) ) )
4212oveq2d 6056 . . . . . . . . . . 11  |-  ( v  =  x  ->  (
z  .\/  ( v  ./\  w ) )  =  ( z  .\/  (
x  ./\  w )
) )
43 oveq2 6048 . . . . . . . . . . . 12  |-  ( v  =  x  ->  (
z  .\/  v )  =  ( z  .\/  x ) )
4443oveq1d 6055 . . . . . . . . . . 11  |-  ( v  =  x  ->  (
( z  .\/  v
)  ./\  ( z  .\/  w ) )  =  ( ( z  .\/  x )  ./\  (
z  .\/  w )
) )
4542, 44eqeq12d 2418 . . . . . . . . . 10  |-  ( v  =  x  ->  (
( z  .\/  (
v  ./\  w )
)  =  ( ( z  .\/  v ) 
./\  ( z  .\/  w ) )  <->  ( z  .\/  ( x  ./\  w
) )  =  ( ( z  .\/  x
)  ./\  ( z  .\/  w ) ) ) )
46 oveq2 6048 . . . . . . . . . . . 12  |-  ( w  =  y  ->  (
x  ./\  w )  =  ( x  ./\  y ) )
4746oveq2d 6056 . . . . . . . . . . 11  |-  ( w  =  y  ->  (
z  .\/  ( x  ./\  w ) )  =  ( z  .\/  (
x  ./\  y )
) )
48 oveq2 6048 . . . . . . . . . . . 12  |-  ( w  =  y  ->  (
z  .\/  w )  =  ( z  .\/  y ) )
4948oveq2d 6056 . . . . . . . . . . 11  |-  ( w  =  y  ->  (
( z  .\/  x
)  ./\  ( z  .\/  w ) )  =  ( ( z  .\/  x )  ./\  (
z  .\/  y )
) )
5047, 49eqeq12d 2418 . . . . . . . . . 10  |-  ( w  =  y  ->  (
( z  .\/  (
x  ./\  w )
)  =  ( ( z  .\/  x ) 
./\  ( z  .\/  w ) )  <->  ( z  .\/  ( x  ./\  y
) )  =  ( ( z  .\/  x
)  ./\  ( z  .\/  y ) ) ) )
5141, 45, 50rspc3v 3021 . . . . . . . . 9  |-  ( ( z  e.  B  /\  x  e.  B  /\  y  e.  B )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  .\/  ( v  ./\  w
) )  =  ( ( u  .\/  v
)  ./\  ( u  .\/  w ) )  -> 
( z  .\/  (
x  ./\  y )
)  =  ( ( z  .\/  x ) 
./\  ( z  .\/  y ) ) ) )
526, 5, 36, 51syl3anc 1184 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  .\/  ( v 
./\  w ) )  =  ( ( u 
.\/  v )  ./\  ( u  .\/  w ) )  ->  ( z  .\/  ( x  ./\  y
) )  =  ( ( z  .\/  x
)  ./\  ( z  .\/  y ) ) ) )
5352imp 419 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  (
z  .\/  ( x  ./\  y ) )  =  ( ( z  .\/  x )  ./\  (
z  .\/  y )
) )
5453oveq2d 6056 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  (
x  ./\  ( z  .\/  ( x  ./\  y
) ) )  =  ( x  ./\  (
( z  .\/  x
)  ./\  ( z  .\/  y ) ) ) )
551, 26latjcl 14434 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  z  e.  B  /\  x  e.  B )  ->  ( z  .\/  x
)  e.  B )
5625, 6, 5, 55syl3anc 1184 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
z  .\/  x )  e.  B )
571, 26latjcl 14434 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  z  e.  B  /\  y  e.  B )  ->  ( z  .\/  y
)  e.  B )
5825, 6, 36, 57syl3anc 1184 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
z  .\/  y )  e.  B )
591, 2latmass 14569 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  ( z  .\/  x
)  e.  B  /\  ( z  .\/  y
)  e.  B ) )  ->  ( (
x  ./\  ( z  .\/  x ) )  ./\  ( z  .\/  y
) )  =  ( x  ./\  ( (
z  .\/  x )  ./\  ( z  .\/  y
) ) ) )
6025, 5, 56, 58, 59syl13anc 1186 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  ./\  (
z  .\/  x )
)  ./\  ( z  .\/  y ) )  =  ( x  ./\  (
( z  .\/  x
)  ./\  ( z  .\/  y ) ) ) )
611, 26latjcom 14443 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  z  e.  B  /\  x  e.  B )  ->  ( z  .\/  x
)  =  ( x 
.\/  z ) )
6225, 6, 5, 61syl3anc 1184 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
z  .\/  x )  =  ( x  .\/  z ) )
6362oveq2d 6056 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  ./\  ( z  .\/  x ) )  =  ( x  ./\  (
x  .\/  z )
) )
641, 26, 2latabs2 14472 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  x  e.  B  /\  z  e.  B )  ->  ( x  ./\  (
x  .\/  z )
)  =  x )
6525, 5, 6, 64syl3anc 1184 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  ./\  ( x  .\/  z ) )  =  x )
6663, 65eqtrd 2436 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  ./\  ( z  .\/  x ) )  =  x )
671, 26latjcom 14443 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  z  e.  B  /\  y  e.  B )  ->  ( z  .\/  y
)  =  ( y 
.\/  z ) )
6825, 6, 36, 67syl3anc 1184 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
z  .\/  y )  =  ( y  .\/  z ) )
6966, 68oveq12d 6058 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  ./\  (
z  .\/  x )
)  ./\  ( z  .\/  y ) )  =  ( x  ./\  (
y  .\/  z )
) )
7060, 69eqtr3d 2438 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  ./\  ( (
z  .\/  x )  ./\  ( z  .\/  y
) ) )  =  ( x  ./\  (
y  .\/  z )
) )
7170adantr 452 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  (
x  ./\  ( (
z  .\/  x )  ./\  ( z  .\/  y
) ) )  =  ( x  ./\  (
y  .\/  z )
) )
7254, 71eqtrd 2436 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  (
x  ./\  ( z  .\/  ( x  ./\  y
) ) )  =  ( x  ./\  (
y  .\/  z )
) )
7324, 35, 723eqtrrd 2441 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  (
x  ./\  ( y  .\/  z ) )  =  ( ( x  ./\  y )  .\/  (
x  ./\  z )
) )
7473an32s 780 . . 3  |-  ( ( ( K  e.  Lat  /\ 
A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  .\/  ( v 
./\  w ) )  =  ( ( u 
.\/  v )  ./\  ( u  .\/  w ) ) )  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( x  ./\  ( y  .\/  z
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  z ) ) )
7574ralrimivvva 2759 . 2  |-  ( ( K  e.  Lat  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y  .\/  z
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  z ) ) )
7675ex 424 1  |-  ( K  e.  Lat  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  .\/  ( v 
./\  w ) )  =  ( ( u 
.\/  v )  ./\  ( u  .\/  w ) )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y  .\/  z
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  z ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   ` cfv 5413  (class class class)co 6040   Basecbs 13424   joincjn 14356   meetcmee 14357   Latclat 14429
This theorem is referenced by:  latdisd  14571
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-undef 6502  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ple 13504  df-poset 14358  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-lat 14430  df-odu 14511
  Copyright terms: Public domain W3C validator