MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latdisdlem Structured version   Unicode version

Theorem latdisdlem 14615
Description: Lemma for latdisd 14616. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
latdisd.b  |-  B  =  ( Base `  K
)
latdisd.j  |-  .\/  =  ( join `  K )
latdisd.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
latdisdlem  |-  ( K  e.  Lat  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  .\/  ( v 
./\  w ) )  =  ( ( u 
.\/  v )  ./\  ( u  .\/  w ) )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y  .\/  z
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  z ) ) ) )
Distinct variable groups:    v, u, w, x, y, z, K   
u, B, v, w, x, y, z    u,  .\/ , v, w, x, y, z    u,  ./\ , v, w, x, y, z

Proof of Theorem latdisdlem
StepHypRef Expression
1 latdisd.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
2 latdisd.m . . . . . . . . 9  |-  ./\  =  ( meet `  K )
31, 2latmcl 14480 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  x  e.  B  /\  y  e.  B )  ->  ( x  ./\  y
)  e.  B )
433adant3r3 1164 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  ./\  y )  e.  B )
5 simpr1 963 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  x  e.  B )
6 simpr3 965 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  z  e.  B )
7 oveq1 6088 . . . . . . . . 9  |-  ( u  =  ( x  ./\  y )  ->  (
u  .\/  ( v  ./\  w ) )  =  ( ( x  ./\  y )  .\/  (
v  ./\  w )
) )
8 oveq1 6088 . . . . . . . . . 10  |-  ( u  =  ( x  ./\  y )  ->  (
u  .\/  v )  =  ( ( x 
./\  y )  .\/  v ) )
9 oveq1 6088 . . . . . . . . . 10  |-  ( u  =  ( x  ./\  y )  ->  (
u  .\/  w )  =  ( ( x 
./\  y )  .\/  w ) )
108, 9oveq12d 6099 . . . . . . . . 9  |-  ( u  =  ( x  ./\  y )  ->  (
( u  .\/  v
)  ./\  ( u  .\/  w ) )  =  ( ( ( x 
./\  y )  .\/  v )  ./\  (
( x  ./\  y
)  .\/  w )
) )
117, 10eqeq12d 2450 . . . . . . . 8  |-  ( u  =  ( x  ./\  y )  ->  (
( u  .\/  (
v  ./\  w )
)  =  ( ( u  .\/  v ) 
./\  ( u  .\/  w ) )  <->  ( (
x  ./\  y )  .\/  ( v  ./\  w
) )  =  ( ( ( x  ./\  y )  .\/  v
)  ./\  ( (
x  ./\  y )  .\/  w ) ) ) )
12 oveq1 6088 . . . . . . . . . 10  |-  ( v  =  x  ->  (
v  ./\  w )  =  ( x  ./\  w ) )
1312oveq2d 6097 . . . . . . . . 9  |-  ( v  =  x  ->  (
( x  ./\  y
)  .\/  ( v  ./\  w ) )  =  ( ( x  ./\  y )  .\/  (
x  ./\  w )
) )
14 oveq2 6089 . . . . . . . . . 10  |-  ( v  =  x  ->  (
( x  ./\  y
)  .\/  v )  =  ( ( x 
./\  y )  .\/  x ) )
1514oveq1d 6096 . . . . . . . . 9  |-  ( v  =  x  ->  (
( ( x  ./\  y )  .\/  v
)  ./\  ( (
x  ./\  y )  .\/  w ) )  =  ( ( ( x 
./\  y )  .\/  x )  ./\  (
( x  ./\  y
)  .\/  w )
) )
1613, 15eqeq12d 2450 . . . . . . . 8  |-  ( v  =  x  ->  (
( ( x  ./\  y )  .\/  (
v  ./\  w )
)  =  ( ( ( x  ./\  y
)  .\/  v )  ./\  ( ( x  ./\  y )  .\/  w
) )  <->  ( (
x  ./\  y )  .\/  ( x  ./\  w
) )  =  ( ( ( x  ./\  y )  .\/  x
)  ./\  ( (
x  ./\  y )  .\/  w ) ) ) )
17 oveq2 6089 . . . . . . . . . 10  |-  ( w  =  z  ->  (
x  ./\  w )  =  ( x  ./\  z ) )
1817oveq2d 6097 . . . . . . . . 9  |-  ( w  =  z  ->  (
( x  ./\  y
)  .\/  ( x  ./\  w ) )  =  ( ( x  ./\  y )  .\/  (
x  ./\  z )
) )
19 oveq2 6089 . . . . . . . . . 10  |-  ( w  =  z  ->  (
( x  ./\  y
)  .\/  w )  =  ( ( x 
./\  y )  .\/  z ) )
2019oveq2d 6097 . . . . . . . . 9  |-  ( w  =  z  ->  (
( ( x  ./\  y )  .\/  x
)  ./\  ( (
x  ./\  y )  .\/  w ) )  =  ( ( ( x 
./\  y )  .\/  x )  ./\  (
( x  ./\  y
)  .\/  z )
) )
2118, 20eqeq12d 2450 . . . . . . . 8  |-  ( w  =  z  ->  (
( ( x  ./\  y )  .\/  (
x  ./\  w )
)  =  ( ( ( x  ./\  y
)  .\/  x )  ./\  ( ( x  ./\  y )  .\/  w
) )  <->  ( (
x  ./\  y )  .\/  ( x  ./\  z
) )  =  ( ( ( x  ./\  y )  .\/  x
)  ./\  ( (
x  ./\  y )  .\/  z ) ) ) )
2211, 16, 21rspc3v 3061 . . . . . . 7  |-  ( ( ( x  ./\  y
)  e.  B  /\  x  e.  B  /\  z  e.  B )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  .\/  ( v  ./\  w
) )  =  ( ( u  .\/  v
)  ./\  ( u  .\/  w ) )  -> 
( ( x  ./\  y )  .\/  (
x  ./\  z )
)  =  ( ( ( x  ./\  y
)  .\/  x )  ./\  ( ( x  ./\  y )  .\/  z
) ) ) )
234, 5, 6, 22syl3anc 1184 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  .\/  ( v 
./\  w ) )  =  ( ( u 
.\/  v )  ./\  ( u  .\/  w ) )  ->  ( (
x  ./\  y )  .\/  ( x  ./\  z
) )  =  ( ( ( x  ./\  y )  .\/  x
)  ./\  ( (
x  ./\  y )  .\/  z ) ) ) )
2423imp 419 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  (
( x  ./\  y
)  .\/  ( x  ./\  z ) )  =  ( ( ( x 
./\  y )  .\/  x )  ./\  (
( x  ./\  y
)  .\/  z )
) )
25 simpl 444 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  K  e.  Lat )
26 latdisd.j . . . . . . . . . 10  |-  .\/  =  ( join `  K )
271, 26latjcom 14488 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  ./\  y )  e.  B  /\  x  e.  B )  ->  (
( x  ./\  y
)  .\/  x )  =  ( x  .\/  ( x  ./\  y ) ) )
2825, 4, 5, 27syl3anc 1184 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  ./\  y
)  .\/  x )  =  ( x  .\/  ( x  ./\  y ) ) )
291, 26, 2latabs1 14516 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .\/  (
x  ./\  y )
)  =  x )
30293adant3r3 1164 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  .\/  ( x  ./\  y ) )  =  x )
3128, 30eqtrd 2468 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  ./\  y
)  .\/  x )  =  x )
321, 26latjcom 14488 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( x  ./\  y )  e.  B  /\  z  e.  B )  ->  (
( x  ./\  y
)  .\/  z )  =  ( z  .\/  ( x  ./\  y ) ) )
3325, 4, 6, 32syl3anc 1184 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  ./\  y
)  .\/  z )  =  ( z  .\/  ( x  ./\  y ) ) )
3431, 33oveq12d 6099 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( ( x  ./\  y )  .\/  x
)  ./\  ( (
x  ./\  y )  .\/  z ) )  =  ( x  ./\  (
z  .\/  ( x  ./\  y ) ) ) )
3534adantr 452 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  (
( ( x  ./\  y )  .\/  x
)  ./\  ( (
x  ./\  y )  .\/  z ) )  =  ( x  ./\  (
z  .\/  ( x  ./\  y ) ) ) )
36 simpr2 964 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  y  e.  B )
37 oveq1 6088 . . . . . . . . . . 11  |-  ( u  =  z  ->  (
u  .\/  ( v  ./\  w ) )  =  ( z  .\/  (
v  ./\  w )
) )
38 oveq1 6088 . . . . . . . . . . . 12  |-  ( u  =  z  ->  (
u  .\/  v )  =  ( z  .\/  v ) )
39 oveq1 6088 . . . . . . . . . . . 12  |-  ( u  =  z  ->  (
u  .\/  w )  =  ( z  .\/  w ) )
4038, 39oveq12d 6099 . . . . . . . . . . 11  |-  ( u  =  z  ->  (
( u  .\/  v
)  ./\  ( u  .\/  w ) )  =  ( ( z  .\/  v )  ./\  (
z  .\/  w )
) )
4137, 40eqeq12d 2450 . . . . . . . . . 10  |-  ( u  =  z  ->  (
( u  .\/  (
v  ./\  w )
)  =  ( ( u  .\/  v ) 
./\  ( u  .\/  w ) )  <->  ( z  .\/  ( v  ./\  w
) )  =  ( ( z  .\/  v
)  ./\  ( z  .\/  w ) ) ) )
4212oveq2d 6097 . . . . . . . . . . 11  |-  ( v  =  x  ->  (
z  .\/  ( v  ./\  w ) )  =  ( z  .\/  (
x  ./\  w )
) )
43 oveq2 6089 . . . . . . . . . . . 12  |-  ( v  =  x  ->  (
z  .\/  v )  =  ( z  .\/  x ) )
4443oveq1d 6096 . . . . . . . . . . 11  |-  ( v  =  x  ->  (
( z  .\/  v
)  ./\  ( z  .\/  w ) )  =  ( ( z  .\/  x )  ./\  (
z  .\/  w )
) )
4542, 44eqeq12d 2450 . . . . . . . . . 10  |-  ( v  =  x  ->  (
( z  .\/  (
v  ./\  w )
)  =  ( ( z  .\/  v ) 
./\  ( z  .\/  w ) )  <->  ( z  .\/  ( x  ./\  w
) )  =  ( ( z  .\/  x
)  ./\  ( z  .\/  w ) ) ) )
46 oveq2 6089 . . . . . . . . . . . 12  |-  ( w  =  y  ->  (
x  ./\  w )  =  ( x  ./\  y ) )
4746oveq2d 6097 . . . . . . . . . . 11  |-  ( w  =  y  ->  (
z  .\/  ( x  ./\  w ) )  =  ( z  .\/  (
x  ./\  y )
) )
48 oveq2 6089 . . . . . . . . . . . 12  |-  ( w  =  y  ->  (
z  .\/  w )  =  ( z  .\/  y ) )
4948oveq2d 6097 . . . . . . . . . . 11  |-  ( w  =  y  ->  (
( z  .\/  x
)  ./\  ( z  .\/  w ) )  =  ( ( z  .\/  x )  ./\  (
z  .\/  y )
) )
5047, 49eqeq12d 2450 . . . . . . . . . 10  |-  ( w  =  y  ->  (
( z  .\/  (
x  ./\  w )
)  =  ( ( z  .\/  x ) 
./\  ( z  .\/  w ) )  <->  ( z  .\/  ( x  ./\  y
) )  =  ( ( z  .\/  x
)  ./\  ( z  .\/  y ) ) ) )
5141, 45, 50rspc3v 3061 . . . . . . . . 9  |-  ( ( z  e.  B  /\  x  e.  B  /\  y  e.  B )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  .\/  ( v  ./\  w
) )  =  ( ( u  .\/  v
)  ./\  ( u  .\/  w ) )  -> 
( z  .\/  (
x  ./\  y )
)  =  ( ( z  .\/  x ) 
./\  ( z  .\/  y ) ) ) )
526, 5, 36, 51syl3anc 1184 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  .\/  ( v 
./\  w ) )  =  ( ( u 
.\/  v )  ./\  ( u  .\/  w ) )  ->  ( z  .\/  ( x  ./\  y
) )  =  ( ( z  .\/  x
)  ./\  ( z  .\/  y ) ) ) )
5352imp 419 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  (
z  .\/  ( x  ./\  y ) )  =  ( ( z  .\/  x )  ./\  (
z  .\/  y )
) )
5453oveq2d 6097 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  (
x  ./\  ( z  .\/  ( x  ./\  y
) ) )  =  ( x  ./\  (
( z  .\/  x
)  ./\  ( z  .\/  y ) ) ) )
551, 26latjcl 14479 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  z  e.  B  /\  x  e.  B )  ->  ( z  .\/  x
)  e.  B )
5625, 6, 5, 55syl3anc 1184 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
z  .\/  x )  e.  B )
571, 26latjcl 14479 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  z  e.  B  /\  y  e.  B )  ->  ( z  .\/  y
)  e.  B )
5825, 6, 36, 57syl3anc 1184 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
z  .\/  y )  e.  B )
591, 2latmass 14614 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  ( z  .\/  x
)  e.  B  /\  ( z  .\/  y
)  e.  B ) )  ->  ( (
x  ./\  ( z  .\/  x ) )  ./\  ( z  .\/  y
) )  =  ( x  ./\  ( (
z  .\/  x )  ./\  ( z  .\/  y
) ) ) )
6025, 5, 56, 58, 59syl13anc 1186 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  ./\  (
z  .\/  x )
)  ./\  ( z  .\/  y ) )  =  ( x  ./\  (
( z  .\/  x
)  ./\  ( z  .\/  y ) ) ) )
611, 26latjcom 14488 . . . . . . . . . . . 12  |-  ( ( K  e.  Lat  /\  z  e.  B  /\  x  e.  B )  ->  ( z  .\/  x
)  =  ( x 
.\/  z ) )
6225, 6, 5, 61syl3anc 1184 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
z  .\/  x )  =  ( x  .\/  z ) )
6362oveq2d 6097 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  ./\  ( z  .\/  x ) )  =  ( x  ./\  (
x  .\/  z )
) )
641, 26, 2latabs2 14517 . . . . . . . . . . 11  |-  ( ( K  e.  Lat  /\  x  e.  B  /\  z  e.  B )  ->  ( x  ./\  (
x  .\/  z )
)  =  x )
6525, 5, 6, 64syl3anc 1184 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  ./\  ( x  .\/  z ) )  =  x )
6663, 65eqtrd 2468 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  ./\  ( z  .\/  x ) )  =  x )
671, 26latjcom 14488 . . . . . . . . . 10  |-  ( ( K  e.  Lat  /\  z  e.  B  /\  y  e.  B )  ->  ( z  .\/  y
)  =  ( y 
.\/  z ) )
6825, 6, 36, 67syl3anc 1184 . . . . . . . . 9  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
z  .\/  y )  =  ( y  .\/  z ) )
6966, 68oveq12d 6099 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
( x  ./\  (
z  .\/  x )
)  ./\  ( z  .\/  y ) )  =  ( x  ./\  (
y  .\/  z )
) )
7060, 69eqtr3d 2470 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  ->  (
x  ./\  ( (
z  .\/  x )  ./\  ( z  .\/  y
) ) )  =  ( x  ./\  (
y  .\/  z )
) )
7170adantr 452 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  (
x  ./\  ( (
z  .\/  x )  ./\  ( z  .\/  y
) ) )  =  ( x  ./\  (
y  .\/  z )
) )
7254, 71eqtrd 2468 . . . . 5  |-  ( ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  (
x  ./\  ( z  .\/  ( x  ./\  y
) ) )  =  ( x  ./\  (
y  .\/  z )
) )
7324, 35, 723eqtrrd 2473 . . . 4  |-  ( ( ( K  e.  Lat  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B
) )  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  (
x  ./\  ( y  .\/  z ) )  =  ( ( x  ./\  y )  .\/  (
x  ./\  z )
) )
7473an32s 780 . . 3  |-  ( ( ( K  e.  Lat  /\ 
A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  .\/  ( v 
./\  w ) )  =  ( ( u 
.\/  v )  ./\  ( u  .\/  w ) ) )  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( x  ./\  ( y  .\/  z
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  z ) ) )
7574ralrimivvva 2799 . 2  |-  ( ( K  e.  Lat  /\  A. u  e.  B  A. v  e.  B  A. w  e.  B  (
u  .\/  ( v  ./\  w ) )  =  ( ( u  .\/  v )  ./\  (
u  .\/  w )
) )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y  .\/  z
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  z ) ) )
7675ex 424 1  |-  ( K  e.  Lat  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( u  .\/  ( v 
./\  w ) )  =  ( ( u 
.\/  v )  ./\  ( u  .\/  w ) )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( x  ./\  ( y  .\/  z
) )  =  ( ( x  ./\  y
)  .\/  ( x  ./\  z ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2705   ` cfv 5454  (class class class)co 6081   Basecbs 13469   joincjn 14401   meetcmee 14402   Latclat 14474
This theorem is referenced by:  latdisd  14616
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ple 13549  df-poset 14403  df-lub 14431  df-glb 14432  df-join 14433  df-meet 14434  df-lat 14475  df-odu 14556
  Copyright terms: Public domain W3C validator