MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjjdir Structured version   Unicode version

Theorem latjjdir 14533
Description: Lattice join distributes over itself. (Contributed by NM, 2-Aug-2012.)
Hypotheses
Ref Expression
latjass.b  |-  B  =  ( Base `  K
)
latjass.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
latjjdir  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  Z )  =  ( ( X 
.\/  Z )  .\/  ( Y  .\/  Z ) ) )

Proof of Theorem latjjdir
StepHypRef Expression
1 latjass.b . . . . 5  |-  B  =  ( Base `  K
)
2 latjass.j . . . . 5  |-  .\/  =  ( join `  K )
31, 2latjidm 14503 . . . 4  |-  ( ( K  e.  Lat  /\  Z  e.  B )  ->  ( Z  .\/  Z
)  =  Z )
433ad2antr3 1124 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Z  .\/  Z )  =  Z )
54oveq2d 6097 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  ( Z  .\/  Z ) )  =  ( ( X  .\/  Y )  .\/  Z ) )
6 simpl 444 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  Lat )
7 simpr1 963 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
8 simpr2 964 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
9 simpr3 965 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
101, 2latj4 14530 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  Z  e.  B ) )  -> 
( ( X  .\/  Y )  .\/  ( Z 
.\/  Z ) )  =  ( ( X 
.\/  Z )  .\/  ( Y  .\/  Z ) ) )
116, 7, 8, 9, 9, 10syl122anc 1193 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  ( Z  .\/  Z ) )  =  ( ( X  .\/  Z )  .\/  ( Y 
.\/  Z ) ) )
125, 11eqtr3d 2470 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Y
)  .\/  Z )  =  ( ( X 
.\/  Z )  .\/  ( Y  .\/  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5454  (class class class)co 6081   Basecbs 13469   joincjn 14401   Latclat 14474
This theorem is referenced by:  dalem38  30507  cdleme23b  31147
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-undef 6543  df-riota 6549  df-poset 14403  df-lub 14431  df-join 14433  df-lat 14475
  Copyright terms: Public domain W3C validator