MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjlej1 Unicode version

Theorem latjlej1 14421
Description: Add join to both sides of a lattice ordering. (chlej1i 22823 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
latlej.b  |-  B  =  ( Base `  K
)
latlej.l  |-  .<_  =  ( le `  K )
latlej.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
latjlej1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( X  .\/  Z )  .<_  ( Y  .\/  Z ) ) )

Proof of Theorem latjlej1
StepHypRef Expression
1 latlej.b . . . . . 6  |-  B  =  ( Base `  K
)
2 latlej.l . . . . . 6  |-  .<_  =  ( le `  K )
3 latlej.j . . . . . 6  |-  .\/  =  ( join `  K )
41, 2, 3latlej1 14416 . . . . 5  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  Y  .<_  ( Y  .\/  Z ) )
543adant3r1 1162 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  .<_  ( Y  .\/  Z
) )
6 simpl 444 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  Lat )
7 simpr1 963 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
8 simpr2 964 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Y  e.  B )
91, 3latjcl 14406 . . . . . 6  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .\/  Z
)  e.  B )
1093adant3r1 1162 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Y  .\/  Z )  e.  B )
111, 2lattr 14412 . . . . 5  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  ( Y  .\/  Z
)  e.  B ) )  ->  ( ( X  .<_  Y  /\  Y  .<_  ( Y  .\/  Z
) )  ->  X  .<_  ( Y  .\/  Z
) ) )
126, 7, 8, 10, 11syl13anc 1186 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .<_  Y  /\  Y  .<_  ( Y  .\/  Z ) )  ->  X  .<_  ( Y  .\/  Z
) ) )
135, 12mpan2d 656 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  X  .<_  ( Y  .\/  Z
) ) )
141, 2, 3latlej2 14417 . . . 4  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  Z  .<_  ( Y  .\/  Z ) )
15143adant3r1 1162 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  .<_  ( Y  .\/  Z
) )
1613, 15jctird 529 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( X  .<_  ( Y  .\/  Z )  /\  Z  .<_  ( Y  .\/  Z ) ) ) )
17 simpr3 965 . . . 4  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  Z  e.  B )
187, 17, 103jca 1134 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  e.  B  /\  Z  e.  B  /\  ( Y  .\/  Z )  e.  B ) )
191, 2, 3latjle12 14418 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Z  e.  B  /\  ( Y  .\/  Z
)  e.  B ) )  ->  ( ( X  .<_  ( Y  .\/  Z )  /\  Z  .<_  ( Y  .\/  Z ) )  <->  ( X  .\/  Z )  .<_  ( Y  .\/  Z ) ) )
2018, 19syldan 457 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .<_  ( Y 
.\/  Z )  /\  Z  .<_  ( Y  .\/  Z ) )  <->  ( X  .\/  Z )  .<_  ( Y 
.\/  Z ) ) )
2116, 20sylibd 206 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( X  .\/  Z )  .<_  ( Y  .\/  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   Basecbs 13396   lecple 13463   joincjn 14328   Latclat 14401
This theorem is referenced by:  latjlej2  14422  latjlej12  14423  ps-2  29592  dalem5  29781  cdlema1N  29905  dalawlem3  29987  dalawlem6  29990  dalawlem7  29991  dalawlem11  29995  dalawlem12  29996  cdleme20d  30426  trlcolem  30840  cdlemh1  30929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-poset 14330  df-lub 14358  df-join 14360  df-lat 14402
  Copyright terms: Public domain W3C validator