MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latjlej2 Structured version   Unicode version

Theorem latjlej2 14485
Description: Add join to both sides of a lattice ordering. (chlej2i 22966 analog.) (Contributed by NM, 8-Nov-2011.)
Hypotheses
Ref Expression
latlej.b  |-  B  =  ( Base `  K
)
latlej.l  |-  .<_  =  ( le `  K )
latlej.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
latjlej2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( Z  .\/  X )  .<_  ( Z  .\/  Y ) ) )

Proof of Theorem latjlej2
StepHypRef Expression
1 latlej.b . . 3  |-  B  =  ( Base `  K
)
2 latlej.l . . 3  |-  .<_  =  ( le `  K )
3 latlej.j . . 3  |-  .\/  =  ( join `  K )
41, 2, 3latjlej1 14484 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( X  .\/  Z )  .<_  ( Y  .\/  Z ) ) )
51, 3latjcom 14478 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .\/  Z
)  =  ( Z 
.\/  X ) )
653adant3r2 1163 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  Z )  =  ( Z  .\/  X
) )
71, 3latjcom 14478 . . . 4  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .\/  Z
)  =  ( Z 
.\/  Y ) )
873adant3r1 1162 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( Y  .\/  Z )  =  ( Z  .\/  Y
) )
96, 8breq12d 4217 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  (
( X  .\/  Z
)  .<_  ( Y  .\/  Z )  <->  ( Z  .\/  X )  .<_  ( Z  .\/  Y ) ) )
104, 9sylibd 206 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( Z  .\/  X )  .<_  ( Z  .\/  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13459   lecple 13526   joincjn 14391   Latclat 14464
This theorem is referenced by:  latjlej12  14486  cvrat3  30140  2llnjaN  30264  2lplnja  30317  dalawlem3  30571  dalawlem6  30574  dalawlem11  30579  lhpj1  30720  cdleme1  30925  cdleme9  30951  cdleme11g  30963  cdleme28a  31068  cdleme30a  31076  cdleme32c  31141  cdlemi1  31516  cdlemk11  31547  cdlemk11u  31569  cdlemk51  31651  cdlemm10N  31817  cdlemn10  31905
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14393  df-lub 14421  df-join 14423  df-lat 14465
  Copyright terms: Public domain W3C validator