MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latleeqj2 Structured version   Unicode version

Theorem latleeqj2 14485
Description: Less-than-or-equal-to in terms of join. (chlejb2 23007 analog.) (Contributed by NM, 14-Nov-2011.)
Hypotheses
Ref Expression
latlej.b  |-  B  =  ( Base `  K
)
latlej.l  |-  .<_  =  ( le `  K )
latlej.j  |-  .\/  =  ( join `  K )
Assertion
Ref Expression
latleeqj2  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( Y  .\/  X )  =  Y ) )

Proof of Theorem latleeqj2
StepHypRef Expression
1 latlej.b . . 3  |-  B  =  ( Base `  K
)
2 latlej.l . . 3  |-  .<_  =  ( le `  K )
3 latlej.j . . 3  |-  .\/  =  ( join `  K )
41, 2, 3latleeqj1 14484 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( X  .\/  Y )  =  Y ) )
51, 3latjcom 14480 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  =  ( Y 
.\/  X ) )
65eqeq1d 2443 . 2  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X  .\/  Y )  =  Y  <->  ( Y  .\/  X )  =  Y ) )
74, 6bitrd 245 1  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<_  Y  <->  ( Y  .\/  X )  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   joincjn 14393   Latclat 14466
This theorem is referenced by:  latabs1  14508  cvrat4  30177  islpln2a  30282  2atmat  30295  lvolnle3at  30316  islvol2aN  30326  dalem39  30445  cdleme11  31004  cdleme30a  31112
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-poset 14395  df-lub 14423  df-join 14425  df-lat 14467
  Copyright terms: Public domain W3C validator