MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmlej11 Unicode version

Theorem latmlej11 14446
Description: Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012.)
Hypotheses
Ref Expression
latledi.b  |-  B  =  ( Base `  K
)
latledi.l  |-  .<_  =  ( le `  K )
latledi.j  |-  .\/  =  ( join `  K )
latledi.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
latmlej11  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Y )  .<_  ( X  .\/  Z ) )

Proof of Theorem latmlej11
StepHypRef Expression
1 latledi.b . 2  |-  B  =  ( Base `  K
)
2 latledi.l . 2  |-  .<_  =  ( le `  K )
3 simpl 444 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  K  e.  Lat )
4 latledi.m . . . 4  |-  ./\  =  ( meet `  K )
51, 4latmcl 14407 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
653adant3r3 1164 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Y )  e.  B )
7 simpr1 963 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  e.  B )
8 latledi.j . . . 4  |-  .\/  =  ( join `  K )
91, 8latjcl 14406 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  .\/  Z
)  e.  B )
1093adant3r2 1163 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .\/  Z )  e.  B )
111, 2, 4latmle1 14432 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  .<_  X )
12113adant3r3 1164 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Y )  .<_  X )
131, 2, 8latlej1 14416 . . 3  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  X  .<_  ( X  .\/  Z ) )
14133adant3r2 1163 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  X  .<_  ( X  .\/  Z
) )
151, 2, 3, 6, 7, 10, 12, 14lattrd 14414 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  ./\  Y )  .<_  ( X  .\/  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   Basecbs 13396   lecple 13463   joincjn 14328   meetcmee 14329   Latclat 14401
This theorem is referenced by:  latmlej12  14447  latmlej21  14448  cdlema1N  29905
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-poset 14330  df-lub 14358  df-glb 14359  df-join 14360  df-meet 14361  df-lat 14402
  Copyright terms: Public domain W3C validator