MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latmlem12 Unicode version

Theorem latmlem12 14439
Description: Add join to both sides of a lattice ordering. (ss2in 3511 analog.) (Contributed by NM, 10-Nov-2011.)
Hypotheses
Ref Expression
latmle.b  |-  B  =  ( Base `  K
)
latmle.l  |-  .<_  =  ( le `  K )
latmle.m  |-  ./\  =  ( meet `  K )
Assertion
Ref Expression
latmlem12  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( ( X  .<_  Y  /\  Z  .<_  W )  ->  ( X  ./\  Z )  .<_  ( Y  ./\ 
W ) ) )

Proof of Theorem latmlem12
StepHypRef Expression
1 simp1 957 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  K  e.  Lat )
2 simp2l 983 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  X  e.  B )
3 simp2r 984 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  Y  e.  B )
4 simp3l 985 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  Z  e.  B )
5 latmle.b . . . 4  |-  B  =  ( Base `  K
)
6 latmle.l . . . 4  |-  .<_  =  ( le `  K )
7 latmle.m . . . 4  |-  ./\  =  ( meet `  K )
85, 6, 7latmlem1 14437 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B
) )  ->  ( X  .<_  Y  ->  ( X  ./\  Z )  .<_  ( Y  ./\  Z ) ) )
91, 2, 3, 4, 8syl13anc 1186 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( X  .<_  Y  -> 
( X  ./\  Z
)  .<_  ( Y  ./\  Z ) ) )
10 simp3r 986 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  ->  W  e.  B )
115, 6, 7latmlem2 14438 . . 3  |-  ( ( K  e.  Lat  /\  ( Z  e.  B  /\  W  e.  B  /\  Y  e.  B
) )  ->  ( Z  .<_  W  ->  ( Y  ./\  Z )  .<_  ( Y  ./\  W ) ) )
121, 4, 10, 3, 11syl13anc 1186 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( Z  .<_  W  -> 
( Y  ./\  Z
)  .<_  ( Y  ./\  W ) ) )
135, 7latmcl 14407 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Z  e.  B )  ->  ( X  ./\  Z
)  e.  B )
141, 2, 4, 13syl3anc 1184 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( X  ./\  Z
)  e.  B )
155, 7latmcl 14407 . . . 4  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  ./\  Z
)  e.  B )
161, 3, 4, 15syl3anc 1184 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( Y  ./\  Z
)  e.  B )
175, 7latmcl 14407 . . . 4  |-  ( ( K  e.  Lat  /\  Y  e.  B  /\  W  e.  B )  ->  ( Y  ./\  W
)  e.  B )
181, 3, 10, 17syl3anc 1184 . . 3  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( Y  ./\  W
)  e.  B )
195, 6lattr 14412 . . 3  |-  ( ( K  e.  Lat  /\  ( ( X  ./\  Z )  e.  B  /\  ( Y  ./\  Z )  e.  B  /\  ( Y  ./\  W )  e.  B ) )  -> 
( ( ( X 
./\  Z )  .<_  ( Y  ./\  Z )  /\  ( Y  ./\  Z )  .<_  ( Y  ./\ 
W ) )  -> 
( X  ./\  Z
)  .<_  ( Y  ./\  W ) ) )
201, 14, 16, 18, 19syl13anc 1186 . 2  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( ( ( X 
./\  Z )  .<_  ( Y  ./\  Z )  /\  ( Y  ./\  Z )  .<_  ( Y  ./\ 
W ) )  -> 
( X  ./\  Z
)  .<_  ( Y  ./\  W ) ) )
219, 12, 20syl2and 470 1  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B
)  /\  ( Z  e.  B  /\  W  e.  B ) )  -> 
( ( X  .<_  Y  /\  Z  .<_  W )  ->  ( X  ./\  Z )  .<_  ( Y  ./\ 
W ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   class class class wbr 4153   ` cfv 5394  (class class class)co 6020   Basecbs 13396   lecple 13463   meetcmee 14329   Latclat 14401
This theorem is referenced by:  dalem10  29787  dalem55  29841  dalawlem3  29987  dalawlem7  29991  dalawlem11  29995  dalawlem12  29996  cdlemk51  31067
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-undef 6479  df-riota 6485  df-poset 14330  df-glb 14359  df-meet 14361  df-lat 14402
  Copyright terms: Public domain W3C validator