Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  laut11 Structured version   Unicode version

Theorem laut11 30810
Description: One-to-one property of a lattice automorphism. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
laut1o.b  |-  B  =  ( Base `  K
)
laut1o.i  |-  I  =  ( LAut `  K
)
Assertion
Ref Expression
laut11  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( ( F `  X )  =  ( F `  Y )  <-> 
X  =  Y ) )

Proof of Theorem laut11
StepHypRef Expression
1 laut1o.b . . . 4  |-  B  =  ( Base `  K
)
2 laut1o.i . . . 4  |-  I  =  ( LAut `  K
)
31, 2laut1o 30809 . . 3  |-  ( ( K  e.  V  /\  F  e.  I )  ->  F : B -1-1-onto-> B )
4 f1of1 5665 . . 3  |-  ( F : B -1-1-onto-> B  ->  F : B -1-1-> B )
53, 4syl 16 . 2  |-  ( ( K  e.  V  /\  F  e.  I )  ->  F : B -1-1-> B
)
6 f1fveq 6000 . 2  |-  ( ( F : B -1-1-> B  /\  ( X  e.  B  /\  Y  e.  B
) )  ->  (
( F `  X
)  =  ( F `
 Y )  <->  X  =  Y ) )
75, 6sylan 458 1  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( ( F `  X )  =  ( F `  Y )  <-> 
X  =  Y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   -1-1->wf1 5443   -1-1-onto->wf1o 5445   ` cfv 5446   Basecbs 13461   LAutclaut 30709
This theorem is referenced by:  lautlt  30815  ltrn11  30850
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-map 7012  df-laut 30713
  Copyright terms: Public domain W3C validator