Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautcnvle Unicode version

Theorem lautcnvle 30278
Description: Less-than or equal property of lattice automorphism converse. (Contributed by NM, 19-May-2012.)
Hypotheses
Ref Expression
lautcnvle.b  |-  B  =  ( Base `  K
)
lautcnvle.l  |-  .<_  =  ( le `  K )
lautcnvle.i  |-  I  =  ( LAut `  K
)
Assertion
Ref Expression
lautcnvle  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X  .<_  Y  <->  ( `' F `  X )  .<_  ( `' F `  Y ) ) )

Proof of Theorem lautcnvle
StepHypRef Expression
1 simpl 443 . . 3  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( K  e.  V  /\  F  e.  I
) )
2 lautcnvle.b . . . . . 6  |-  B  =  ( Base `  K
)
3 lautcnvle.i . . . . . 6  |-  I  =  ( LAut `  K
)
42, 3laut1o 30274 . . . . 5  |-  ( ( K  e.  V  /\  F  e.  I )  ->  F : B -1-1-onto-> B )
54adantr 451 . . . 4  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  F : B -1-1-onto-> B )
6 simprl 732 . . . 4  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  X  e.  B )
7 f1ocnvdm 5796 . . . 4  |-  ( ( F : B -1-1-onto-> B  /\  X  e.  B )  ->  ( `' F `  X )  e.  B
)
85, 6, 7syl2anc 642 . . 3  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( `' F `  X )  e.  B
)
9 simprr 733 . . . 4  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  Y  e.  B )
10 f1ocnvdm 5796 . . . 4  |-  ( ( F : B -1-1-onto-> B  /\  Y  e.  B )  ->  ( `' F `  Y )  e.  B
)
115, 9, 10syl2anc 642 . . 3  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( `' F `  Y )  e.  B
)
12 lautcnvle.l . . . 4  |-  .<_  =  ( le `  K )
132, 12, 3lautle 30273 . . 3  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( ( `' F `  X )  e.  B  /\  ( `' F `  Y )  e.  B ) )  ->  ( ( `' F `  X ) 
.<_  ( `' F `  Y )  <->  ( F `  ( `' F `  X ) )  .<_  ( F `  ( `' F `  Y ) ) ) )
141, 8, 11, 13syl12anc 1180 . 2  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( ( `' F `  X )  .<_  ( `' F `  Y )  <-> 
( F `  ( `' F `  X ) )  .<_  ( F `  ( `' F `  Y ) ) ) )
15 f1ocnvfv2 5793 . . . 4  |-  ( ( F : B -1-1-onto-> B  /\  X  e.  B )  ->  ( F `  ( `' F `  X ) )  =  X )
165, 6, 15syl2anc 642 . . 3  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( F `  ( `' F `  X ) )  =  X )
17 f1ocnvfv2 5793 . . . 4  |-  ( ( F : B -1-1-onto-> B  /\  Y  e.  B )  ->  ( F `  ( `' F `  Y ) )  =  Y )
185, 9, 17syl2anc 642 . . 3  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( F `  ( `' F `  Y ) )  =  Y )
1916, 18breq12d 4036 . 2  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( ( F `  ( `' F `  X ) )  .<_  ( F `  ( `' F `  Y ) )  <->  X  .<_  Y ) )
2014, 19bitr2d 245 1  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X  .<_  Y  <->  ( `' F `  X )  .<_  ( `' F `  Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   class class class wbr 4023   `'ccnv 4688   -1-1-onto->wf1o 5254   ` cfv 5255   Basecbs 13148   lecple 13215   LAutclaut 30174
This theorem is referenced by:  lautcnv  30279  lautj  30282  lautm  30283  ltrncnvleN  30319  ltrneq2  30337
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-laut 30178
  Copyright terms: Public domain W3C validator