Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautcvr Unicode version

Theorem lautcvr 29654
Description: Covering property of a lattice automorphism. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
lautcvr.b  |-  B  =  ( Base `  K
)
lautcvr.c  |-  C  =  (  <o  `  K )
lautcvr.i  |-  I  =  ( LAut `  K
)
Assertion
Ref Expression
lautcvr  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X C Y  <->  ( F `  X ) C ( F `  Y ) ) )

Proof of Theorem lautcvr
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lautcvr.b . . . 4  |-  B  =  ( Base `  K
)
2 eqid 2283 . . . 4  |-  ( lt
`  K )  =  ( lt `  K
)
3 lautcvr.i . . . 4  |-  I  =  ( LAut `  K
)
41, 2, 3lautlt 29653 . . 3  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X ( lt `  K ) Y  <->  ( F `  X ) ( lt
`  K ) ( F `  Y ) ) )
5 simpll 730 . . . . . . . . 9  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  w  e.  B )  ->  K  e.  A )
6 simplr1 997 . . . . . . . . 9  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  w  e.  B )  ->  F  e.  I )
7 simplr2 998 . . . . . . . . 9  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  w  e.  B )  ->  X  e.  B )
8 simpr 447 . . . . . . . . 9  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  w  e.  B )  ->  w  e.  B )
91, 2, 3lautlt 29653 . . . . . . . . 9  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  w  e.  B
) )  ->  ( X ( lt `  K ) w  <->  ( F `  X ) ( lt
`  K ) ( F `  w ) ) )
105, 6, 7, 8, 9syl13anc 1184 . . . . . . . 8  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  w  e.  B )  ->  ( X ( lt `  K ) w  <->  ( F `  X ) ( lt
`  K ) ( F `  w ) ) )
11 simplr3 999 . . . . . . . . 9  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  w  e.  B )  ->  Y  e.  B )
121, 2, 3lautlt 29653 . . . . . . . . 9  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  w  e.  B  /\  Y  e.  B
) )  ->  (
w ( lt `  K ) Y  <->  ( F `  w ) ( lt
`  K ) ( F `  Y ) ) )
135, 6, 8, 11, 12syl13anc 1184 . . . . . . . 8  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  w  e.  B )  ->  (
w ( lt `  K ) Y  <->  ( F `  w ) ( lt
`  K ) ( F `  Y ) ) )
1410, 13anbi12d 691 . . . . . . 7  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  w  e.  B )  ->  (
( X ( lt
`  K ) w  /\  w ( lt
`  K ) Y )  <->  ( ( F `
 X ) ( lt `  K ) ( F `  w
)  /\  ( F `  w ) ( lt
`  K ) ( F `  Y ) ) ) )
151, 3lautcl 29649 . . . . . . . . 9  |-  ( ( ( K  e.  A  /\  F  e.  I
)  /\  w  e.  B )  ->  ( F `  w )  e.  B )
165, 6, 8, 15syl21anc 1181 . . . . . . . 8  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  w  e.  B )  ->  ( F `  w )  e.  B )
17 breq2 4027 . . . . . . . . . . 11  |-  ( z  =  ( F `  w )  ->  (
( F `  X
) ( lt `  K ) z  <->  ( F `  X ) ( lt
`  K ) ( F `  w ) ) )
18 breq1 4026 . . . . . . . . . . 11  |-  ( z  =  ( F `  w )  ->  (
z ( lt `  K ) ( F `
 Y )  <->  ( F `  w ) ( lt
`  K ) ( F `  Y ) ) )
1917, 18anbi12d 691 . . . . . . . . . 10  |-  ( z  =  ( F `  w )  ->  (
( ( F `  X ) ( lt
`  K ) z  /\  z ( lt
`  K ) ( F `  Y ) )  <->  ( ( F `
 X ) ( lt `  K ) ( F `  w
)  /\  ( F `  w ) ( lt
`  K ) ( F `  Y ) ) ) )
2019rspcev 2884 . . . . . . . . 9  |-  ( ( ( F `  w
)  e.  B  /\  ( ( F `  X ) ( lt
`  K ) ( F `  w )  /\  ( F `  w ) ( lt
`  K ) ( F `  Y ) ) )  ->  E. z  e.  B  ( ( F `  X )
( lt `  K
) z  /\  z
( lt `  K
) ( F `  Y ) ) )
2120ex 423 . . . . . . . 8  |-  ( ( F `  w )  e.  B  ->  (
( ( F `  X ) ( lt
`  K ) ( F `  w )  /\  ( F `  w ) ( lt
`  K ) ( F `  Y ) )  ->  E. z  e.  B  ( ( F `  X )
( lt `  K
) z  /\  z
( lt `  K
) ( F `  Y ) ) ) )
2216, 21syl 15 . . . . . . 7  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  w  e.  B )  ->  (
( ( F `  X ) ( lt
`  K ) ( F `  w )  /\  ( F `  w ) ( lt
`  K ) ( F `  Y ) )  ->  E. z  e.  B  ( ( F `  X )
( lt `  K
) z  /\  z
( lt `  K
) ( F `  Y ) ) ) )
2314, 22sylbid 206 . . . . . 6  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  w  e.  B )  ->  (
( X ( lt
`  K ) w  /\  w ( lt
`  K ) Y )  ->  E. z  e.  B  ( ( F `  X )
( lt `  K
) z  /\  z
( lt `  K
) ( F `  Y ) ) ) )
2423rexlimdva 2667 . . . . 5  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( E. w  e.  B  ( X ( lt `  K ) w  /\  w ( lt `  K ) Y )  ->  E. z  e.  B  ( ( F `  X ) ( lt
`  K ) z  /\  z ( lt
`  K ) ( F `  Y ) ) ) )
25 simpll 730 . . . . . . . . . 10  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  K  e.  A )
26 simplr1 997 . . . . . . . . . 10  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  F  e.  I )
27 simplr2 998 . . . . . . . . . 10  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  X  e.  B )
281, 3laut1o 29647 . . . . . . . . . . . 12  |-  ( ( K  e.  A  /\  F  e.  I )  ->  F : B -1-1-onto-> B )
2925, 26, 28syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  F : B -1-1-onto-> B )
30 f1ocnvdm 5796 . . . . . . . . . . 11  |-  ( ( F : B -1-1-onto-> B  /\  z  e.  B )  ->  ( `' F `  z )  e.  B
)
3129, 30sylancom 648 . . . . . . . . . 10  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  ( `' F `  z )  e.  B )
321, 2, 3lautlt 29653 . . . . . . . . . 10  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  ( `' F `  z )  e.  B
) )  ->  ( X ( lt `  K ) ( `' F `  z )  <-> 
( F `  X
) ( lt `  K ) ( F `
 ( `' F `  z ) ) ) )
3325, 26, 27, 31, 32syl13anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  ( X ( lt `  K ) ( `' F `  z )  <-> 
( F `  X
) ( lt `  K ) ( F `
 ( `' F `  z ) ) ) )
34 f1ocnvfv2 5793 . . . . . . . . . . 11  |-  ( ( F : B -1-1-onto-> B  /\  z  e.  B )  ->  ( F `  ( `' F `  z ) )  =  z )
3529, 34sylancom 648 . . . . . . . . . 10  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  ( F `  ( `' F `  z )
)  =  z )
3635breq2d 4035 . . . . . . . . 9  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  (
( F `  X
) ( lt `  K ) ( F `
 ( `' F `  z ) )  <->  ( F `  X ) ( lt
`  K ) z ) )
3733, 36bitr2d 245 . . . . . . . 8  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  (
( F `  X
) ( lt `  K ) z  <->  X ( lt `  K ) ( `' F `  z ) ) )
38 simplr3 999 . . . . . . . . . 10  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  Y  e.  B )
391, 2, 3lautlt 29653 . . . . . . . . . 10  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  ( `' F `  z )  e.  B  /\  Y  e.  B
) )  ->  (
( `' F `  z ) ( lt
`  K ) Y  <-> 
( F `  ( `' F `  z ) ) ( lt `  K ) ( F `
 Y ) ) )
4025, 26, 31, 38, 39syl13anc 1184 . . . . . . . . 9  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  (
( `' F `  z ) ( lt
`  K ) Y  <-> 
( F `  ( `' F `  z ) ) ( lt `  K ) ( F `
 Y ) ) )
4135breq1d 4033 . . . . . . . . 9  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  (
( F `  ( `' F `  z ) ) ( lt `  K ) ( F `
 Y )  <->  z ( lt `  K ) ( F `  Y ) ) )
4240, 41bitr2d 245 . . . . . . . 8  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  (
z ( lt `  K ) ( F `
 Y )  <->  ( `' F `  z )
( lt `  K
) Y ) )
4337, 42anbi12d 691 . . . . . . 7  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  (
( ( F `  X ) ( lt
`  K ) z  /\  z ( lt
`  K ) ( F `  Y ) )  <->  ( X ( lt `  K ) ( `' F `  z )  /\  ( `' F `  z ) ( lt `  K
) Y ) ) )
44 breq2 4027 . . . . . . . . . . 11  |-  ( w  =  ( `' F `  z )  ->  ( X ( lt `  K ) w  <->  X ( lt `  K ) ( `' F `  z ) ) )
45 breq1 4026 . . . . . . . . . . 11  |-  ( w  =  ( `' F `  z )  ->  (
w ( lt `  K ) Y  <->  ( `' F `  z )
( lt `  K
) Y ) )
4644, 45anbi12d 691 . . . . . . . . . 10  |-  ( w  =  ( `' F `  z )  ->  (
( X ( lt
`  K ) w  /\  w ( lt
`  K ) Y )  <->  ( X ( lt `  K ) ( `' F `  z )  /\  ( `' F `  z ) ( lt `  K
) Y ) ) )
4746rspcev 2884 . . . . . . . . 9  |-  ( ( ( `' F `  z )  e.  B  /\  ( X ( lt
`  K ) ( `' F `  z )  /\  ( `' F `  z ) ( lt
`  K ) Y ) )  ->  E. w  e.  B  ( X
( lt `  K
) w  /\  w
( lt `  K
) Y ) )
4847ex 423 . . . . . . . 8  |-  ( ( `' F `  z )  e.  B  ->  (
( X ( lt
`  K ) ( `' F `  z )  /\  ( `' F `  z ) ( lt
`  K ) Y )  ->  E. w  e.  B  ( X
( lt `  K
) w  /\  w
( lt `  K
) Y ) ) )
4931, 48syl 15 . . . . . . 7  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  (
( X ( lt
`  K ) ( `' F `  z )  /\  ( `' F `  z ) ( lt
`  K ) Y )  ->  E. w  e.  B  ( X
( lt `  K
) w  /\  w
( lt `  K
) Y ) ) )
5043, 49sylbid 206 . . . . . 6  |-  ( ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  /\  z  e.  B )  ->  (
( ( F `  X ) ( lt
`  K ) z  /\  z ( lt
`  K ) ( F `  Y ) )  ->  E. w  e.  B  ( X
( lt `  K
) w  /\  w
( lt `  K
) Y ) ) )
5150rexlimdva 2667 . . . . 5  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( E. z  e.  B  ( ( F `  X ) ( lt
`  K ) z  /\  z ( lt
`  K ) ( F `  Y ) )  ->  E. w  e.  B  ( X
( lt `  K
) w  /\  w
( lt `  K
) Y ) ) )
5224, 51impbid 183 . . . 4  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( E. w  e.  B  ( X ( lt `  K ) w  /\  w ( lt `  K ) Y )  <->  E. z  e.  B  ( ( F `  X ) ( lt
`  K ) z  /\  z ( lt
`  K ) ( F `  Y ) ) ) )
5352notbid 285 . . 3  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( -.  E. w  e.  B  ( X ( lt `  K ) w  /\  w ( lt `  K ) Y )  <->  -.  E. z  e.  B  ( ( F `  X ) ( lt
`  K ) z  /\  z ( lt
`  K ) ( F `  Y ) ) ) )
544, 53anbi12d 691 . 2  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( X ( lt
`  K ) Y  /\  -.  E. w  e.  B  ( X
( lt `  K
) w  /\  w
( lt `  K
) Y ) )  <-> 
( ( F `  X ) ( lt
`  K ) ( F `  Y )  /\  -.  E. z  e.  B  ( ( F `  X )
( lt `  K
) z  /\  z
( lt `  K
) ( F `  Y ) ) ) ) )
55 lautcvr.c . . . 4  |-  C  =  (  <o  `  K )
561, 2, 55cvrval 28832 . . 3  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
( X ( lt
`  K ) Y  /\  -.  E. w  e.  B  ( X
( lt `  K
) w  /\  w
( lt `  K
) Y ) ) ) )
57563adant3r1 1160 . 2  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X C Y  <->  ( X
( lt `  K
) Y  /\  -.  E. w  e.  B  ( X ( lt `  K ) w  /\  w ( lt `  K ) Y ) ) ) )
58 simpl 443 . . 3  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  K  e.  A )
59 simpr1 961 . . . 4  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  F  e.  I )
60 simpr2 962 . . . 4  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
611, 3lautcl 29649 . . . 4  |-  ( ( ( K  e.  A  /\  F  e.  I
)  /\  X  e.  B )  ->  ( F `  X )  e.  B )
6258, 59, 60, 61syl21anc 1181 . . 3  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  X )  e.  B )
63 simpr3 963 . . . 4  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  Y  e.  B )
641, 3lautcl 29649 . . . 4  |-  ( ( ( K  e.  A  /\  F  e.  I
)  /\  Y  e.  B )  ->  ( F `  Y )  e.  B )
6558, 59, 63, 64syl21anc 1181 . . 3  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  Y )  e.  B )
661, 2, 55cvrval 28832 . . 3  |-  ( ( K  e.  A  /\  ( F `  X )  e.  B  /\  ( F `  Y )  e.  B )  ->  (
( F `  X
) C ( F `
 Y )  <->  ( ( F `  X )
( lt `  K
) ( F `  Y )  /\  -.  E. z  e.  B  ( ( F `  X
) ( lt `  K ) z  /\  z ( lt `  K ) ( F `
 Y ) ) ) ) )
6758, 62, 65, 66syl3anc 1182 . 2  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( F `  X
) C ( F `
 Y )  <->  ( ( F `  X )
( lt `  K
) ( F `  Y )  /\  -.  E. z  e.  B  ( ( F `  X
) ( lt `  K ) z  /\  z ( lt `  K ) ( F `
 Y ) ) ) ) )
6854, 57, 673bitr4d 276 1  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X C Y  <->  ( F `  X ) C ( F `  Y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   E.wrex 2544   class class class wbr 4023   `'ccnv 4688   -1-1-onto->wf1o 5254   ` cfv 5255   Basecbs 13148   ltcplt 14075    <o ccvr 28825   LAutclaut 29547
This theorem is referenced by:  ltrncvr  29695
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-map 6774  df-plt 14092  df-covers 28829  df-laut 29551
  Copyright terms: Public domain W3C validator