Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautj Unicode version

Theorem lautj 30904
Description: Meet property of a lattice automorphism. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
lautj.b  |-  B  =  ( Base `  K
)
lautj.j  |-  .\/  =  ( join `  K )
lautj.i  |-  I  =  ( LAut `  K
)
Assertion
Ref Expression
lautj  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( X  .\/  Y ) )  =  ( ( F `  X )  .\/  ( F `  Y )
) )

Proof of Theorem lautj
StepHypRef Expression
1 lautj.b . 2  |-  B  =  ( Base `  K
)
2 eqid 2296 . 2  |-  ( le
`  K )  =  ( le `  K
)
3 simpl 443 . 2  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  K  e.  Lat )
4 simpr1 961 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  F  e.  I )
53, 4jca 518 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( K  e.  Lat  /\  F  e.  I ) )
6 lautj.j . . . . 5  |-  .\/  =  ( join `  K )
71, 6latjcl 14172 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .\/  Y
)  e.  B )
873adant3r1 1160 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X  .\/  Y )  e.  B )
9 lautj.i . . . 4  |-  I  =  ( LAut `  K
)
101, 9lautcl 30898 . . 3  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  ( X  .\/  Y )  e.  B )  ->  ( F `  ( X  .\/  Y ) )  e.  B )
115, 8, 10syl2anc 642 . 2  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( X  .\/  Y ) )  e.  B )
12 simpr2 962 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
131, 9lautcl 30898 . . . 4  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  X  e.  B
)  ->  ( F `  X )  e.  B
)
145, 12, 13syl2anc 642 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  X )  e.  B )
15 simpr3 963 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  Y  e.  B )
161, 9lautcl 30898 . . . 4  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  Y  e.  B
)  ->  ( F `  Y )  e.  B
)
175, 15, 16syl2anc 642 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  Y )  e.  B )
181, 6latjcl 14172 . . 3  |-  ( ( K  e.  Lat  /\  ( F `  X )  e.  B  /\  ( F `  Y )  e.  B )  ->  (
( F `  X
)  .\/  ( F `  Y ) )  e.  B )
193, 14, 17, 18syl3anc 1182 . 2  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( F `  X
)  .\/  ( F `  Y ) )  e.  B )
201, 9laut1o 30896 . . . . . 6  |-  ( ( K  e.  Lat  /\  F  e.  I )  ->  F : B -1-1-onto-> B )
21203ad2antr1 1120 . . . . 5  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  F : B -1-1-onto-> B )
22 f1ocnvfv1 5808 . . . . 5  |-  ( ( F : B -1-1-onto-> B  /\  ( X  .\/  Y )  e.  B )  -> 
( `' F `  ( F `  ( X 
.\/  Y ) ) )  =  ( X 
.\/  Y ) )
2321, 8, 22syl2anc 642 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( `' F `  ( F `
 ( X  .\/  Y ) ) )  =  ( X  .\/  Y
) )
241, 2, 6latlej1 14182 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( F `  X )  e.  B  /\  ( F `  Y )  e.  B )  ->  ( F `  X )
( le `  K
) ( ( F `
 X )  .\/  ( F `  Y ) ) )
253, 14, 17, 24syl3anc 1182 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  X )
( le `  K
) ( ( F `
 X )  .\/  ( F `  Y ) ) )
26 f1ocnvfv2 5809 . . . . . . . 8  |-  ( ( F : B -1-1-onto-> B  /\  ( ( F `  X )  .\/  ( F `  Y )
)  e.  B )  ->  ( F `  ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) ) )  =  ( ( F `  X ) 
.\/  ( F `  Y ) ) )
2721, 19, 26syl2anc 642 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( `' F `  ( ( F `  X )  .\/  ( F `  Y
) ) ) )  =  ( ( F `
 X )  .\/  ( F `  Y ) ) )
2825, 27breqtrrd 4065 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  X )
( le `  K
) ( F `  ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) ) ) )
29 f1ocnvdm 5812 . . . . . . . 8  |-  ( ( F : B -1-1-onto-> B  /\  ( ( F `  X )  .\/  ( F `  Y )
)  e.  B )  ->  ( `' F `  ( ( F `  X )  .\/  ( F `  Y )
) )  e.  B
)
3021, 19, 29syl2anc 642 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) )  e.  B )
311, 2, 9lautle 30895 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  ( X  e.  B  /\  ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) )  e.  B ) )  ->  ( X ( le `  K ) ( `' F `  ( ( F `  X )  .\/  ( F `  Y )
) )  <->  ( F `  X ) ( le
`  K ) ( F `  ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) ) ) ) )
325, 12, 30, 31syl12anc 1180 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X ( le `  K ) ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) )  <-> 
( F `  X
) ( le `  K ) ( F `
 ( `' F `  ( ( F `  X )  .\/  ( F `  Y )
) ) ) ) )
3328, 32mpbird 223 . . . . 5  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  X
( le `  K
) ( `' F `  ( ( F `  X )  .\/  ( F `  Y )
) ) )
341, 2, 6latlej2 14183 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( F `  X )  e.  B  /\  ( F `  Y )  e.  B )  ->  ( F `  Y )
( le `  K
) ( ( F `
 X )  .\/  ( F `  Y ) ) )
353, 14, 17, 34syl3anc 1182 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  Y )
( le `  K
) ( ( F `
 X )  .\/  ( F `  Y ) ) )
3635, 27breqtrrd 4065 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  Y )
( le `  K
) ( F `  ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) ) ) )
371, 2, 9lautle 30895 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  ( Y  e.  B  /\  ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) )  e.  B ) )  ->  ( Y ( le `  K ) ( `' F `  ( ( F `  X )  .\/  ( F `  Y )
) )  <->  ( F `  Y ) ( le
`  K ) ( F `  ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) ) ) ) )
385, 15, 30, 37syl12anc 1180 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( Y ( le `  K ) ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) )  <-> 
( F `  Y
) ( le `  K ) ( F `
 ( `' F `  ( ( F `  X )  .\/  ( F `  Y )
) ) ) ) )
3936, 38mpbird 223 . . . . 5  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  Y
( le `  K
) ( `' F `  ( ( F `  X )  .\/  ( F `  Y )
) ) )
401, 2, 6latjle12 14184 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( X  e.  B  /\  Y  e.  B  /\  ( `' F `  ( ( F `  X )  .\/  ( F `  Y )
) )  e.  B
) )  ->  (
( X ( le
`  K ) ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) )  /\  Y ( le
`  K ) ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) ) )  <->  ( X  .\/  Y ) ( le `  K ) ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) ) ) )
413, 12, 15, 30, 40syl13anc 1184 . . . . 5  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( X ( le
`  K ) ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) )  /\  Y ( le
`  K ) ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) ) )  <->  ( X  .\/  Y ) ( le `  K ) ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) ) ) )
4233, 39, 41mpbi2and 887 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X  .\/  Y ) ( le `  K ) ( `' F `  ( ( F `  X )  .\/  ( F `  Y )
) ) )
4323, 42eqbrtrd 4059 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( `' F `  ( F `
 ( X  .\/  Y ) ) ) ( le `  K ) ( `' F `  ( ( F `  X )  .\/  ( F `  Y )
) ) )
441, 2, 9lautcnvle 30900 . . . 4  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  ( ( F `
 ( X  .\/  Y ) )  e.  B  /\  ( ( F `  X )  .\/  ( F `  Y )
)  e.  B ) )  ->  ( ( F `  ( X  .\/  Y ) ) ( le `  K ) ( ( F `  X )  .\/  ( F `  Y )
)  <->  ( `' F `  ( F `  ( X  .\/  Y ) ) ) ( le `  K ) ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) ) ) )
455, 11, 19, 44syl12anc 1180 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( F `  ( X  .\/  Y ) ) ( le `  K
) ( ( F `
 X )  .\/  ( F `  Y ) )  <->  ( `' F `  ( F `  ( X  .\/  Y ) ) ) ( le `  K ) ( `' F `  ( ( F `  X ) 
.\/  ( F `  Y ) ) ) ) )
4643, 45mpbird 223 . 2  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( X  .\/  Y ) ) ( le `  K ) ( ( F `  X )  .\/  ( F `  Y )
) )
471, 2, 6latlej1 14182 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  X ( le `  K ) ( X 
.\/  Y ) )
48473adant3r1 1160 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  X
( le `  K
) ( X  .\/  Y ) )
491, 2, 9lautle 30895 . . . . 5  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  ( X  e.  B  /\  ( X 
.\/  Y )  e.  B ) )  -> 
( X ( le
`  K ) ( X  .\/  Y )  <-> 
( F `  X
) ( le `  K ) ( F `
 ( X  .\/  Y ) ) ) )
505, 12, 8, 49syl12anc 1180 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X ( le `  K ) ( X 
.\/  Y )  <->  ( F `  X ) ( le
`  K ) ( F `  ( X 
.\/  Y ) ) ) )
5148, 50mpbid 201 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  X )
( le `  K
) ( F `  ( X  .\/  Y ) ) )
521, 2, 6latlej2 14183 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  Y ( le `  K ) ( X 
.\/  Y ) )
53523adant3r1 1160 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  Y
( le `  K
) ( X  .\/  Y ) )
541, 2, 9lautle 30895 . . . . 5  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  ( Y  e.  B  /\  ( X 
.\/  Y )  e.  B ) )  -> 
( Y ( le
`  K ) ( X  .\/  Y )  <-> 
( F `  Y
) ( le `  K ) ( F `
 ( X  .\/  Y ) ) ) )
555, 15, 8, 54syl12anc 1180 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( Y ( le `  K ) ( X 
.\/  Y )  <->  ( F `  Y ) ( le
`  K ) ( F `  ( X 
.\/  Y ) ) ) )
5653, 55mpbid 201 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  Y )
( le `  K
) ( F `  ( X  .\/  Y ) ) )
571, 2, 6latjle12 14184 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( F `  X )  e.  B  /\  ( F `  Y
)  e.  B  /\  ( F `  ( X 
.\/  Y ) )  e.  B ) )  ->  ( ( ( F `  X ) ( le `  K
) ( F `  ( X  .\/  Y ) )  /\  ( F `
 Y ) ( le `  K ) ( F `  ( X  .\/  Y ) ) )  <->  ( ( F `
 X )  .\/  ( F `  Y ) ) ( le `  K ) ( F `
 ( X  .\/  Y ) ) ) )
583, 14, 17, 11, 57syl13anc 1184 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( ( F `  X ) ( le
`  K ) ( F `  ( X 
.\/  Y ) )  /\  ( F `  Y ) ( le
`  K ) ( F `  ( X 
.\/  Y ) ) )  <->  ( ( F `
 X )  .\/  ( F `  Y ) ) ( le `  K ) ( F `
 ( X  .\/  Y ) ) ) )
5951, 56, 58mpbi2and 887 . 2  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( F `  X
)  .\/  ( F `  Y ) ) ( le `  K ) ( F `  ( X  .\/  Y ) ) )
601, 2, 3, 11, 19, 46, 59latasymd 14179 1  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( X  .\/  Y ) )  =  ( ( F `  X )  .\/  ( F `  Y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039   `'ccnv 4704   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   Basecbs 13164   lecple 13231   joincjn 14094   Latclat 14167   LAutclaut 30796
This theorem is referenced by:  ltrnj  30943
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-lub 14124  df-join 14126  df-lat 14168  df-laut 30800
  Copyright terms: Public domain W3C validator