Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautle Structured version   Unicode version

Theorem lautle 30955
Description: Less-than or equal property of a lattice automorphism. (Contributed by NM, 19-May-2012.)
Hypotheses
Ref Expression
lautset.b  |-  B  =  ( Base `  K
)
lautset.l  |-  .<_  =  ( le `  K )
lautset.i  |-  I  =  ( LAut `  K
)
Assertion
Ref Expression
lautle  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X  .<_  Y  <->  ( F `  X )  .<_  ( F `
 Y ) ) )

Proof of Theorem lautle
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lautset.b . . . 4  |-  B  =  ( Base `  K
)
2 lautset.l . . . 4  |-  .<_  =  ( le `  K )
3 lautset.i . . . 4  |-  I  =  ( LAut `  K
)
41, 2, 3islaut 30954 . . 3  |-  ( K  e.  V  ->  ( F  e.  I  <->  ( F : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( F `  x )  .<_  ( F `
 y ) ) ) ) )
54simplbda 609 . 2  |-  ( ( K  e.  V  /\  F  e.  I )  ->  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( F `  x )  .<_  ( F `
 y ) ) )
6 breq1 4218 . . . 4  |-  ( x  =  X  ->  (
x  .<_  y  <->  X  .<_  y ) )
7 fveq2 5731 . . . . 5  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
87breq1d 4225 . . . 4  |-  ( x  =  X  ->  (
( F `  x
)  .<_  ( F `  y )  <->  ( F `  X )  .<_  ( F `
 y ) ) )
96, 8bibi12d 314 . . 3  |-  ( x  =  X  ->  (
( x  .<_  y  <->  ( F `  x )  .<_  ( F `
 y ) )  <-> 
( X  .<_  y  <->  ( F `  X )  .<_  ( F `
 y ) ) ) )
10 breq2 4219 . . . 4  |-  ( y  =  Y  ->  ( X  .<_  y  <->  X  .<_  Y ) )
11 fveq2 5731 . . . . 5  |-  ( y  =  Y  ->  ( F `  y )  =  ( F `  Y ) )
1211breq2d 4227 . . . 4  |-  ( y  =  Y  ->  (
( F `  X
)  .<_  ( F `  y )  <->  ( F `  X )  .<_  ( F `
 Y ) ) )
1310, 12bibi12d 314 . . 3  |-  ( y  =  Y  ->  (
( X  .<_  y  <->  ( F `  X )  .<_  ( F `
 y ) )  <-> 
( X  .<_  Y  <->  ( F `  X )  .<_  ( F `
 Y ) ) ) )
149, 13rspc2v 3060 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( x  .<_  y  <-> 
( F `  x
)  .<_  ( F `  y ) )  -> 
( X  .<_  Y  <->  ( F `  X )  .<_  ( F `
 Y ) ) ) )
155, 14mpan9 457 1  |-  ( ( ( K  e.  V  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X  .<_  Y  <->  ( F `  X )  .<_  ( F `
 Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   class class class wbr 4215   -1-1-onto->wf1o 5456   ` cfv 5457   Basecbs 13474   lecple 13541   LAutclaut 30856
This theorem is referenced by:  lautcnvle  30960  lautlt  30962  lautj  30964  lautm  30965  lauteq  30966  lautco  30968  ltrnle  31000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-map 7023  df-laut 30860
  Copyright terms: Public domain W3C validator