Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautlt Unicode version

Theorem lautlt 30902
Description: Less-than property of a lattice automorphism. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
lautlt.b  |-  B  =  ( Base `  K
)
lautlt.s  |-  .<  =  ( lt `  K )
lautlt.i  |-  I  =  ( LAut `  K
)
Assertion
Ref Expression
lautlt  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X  .<  Y  <->  ( F `  X )  .<  ( F `  Y )
) )

Proof of Theorem lautlt
StepHypRef Expression
1 simpl 443 . . . 4  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  K  e.  A )
2 simpr1 961 . . . 4  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  F  e.  I )
3 simpr2 962 . . . 4  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
4 simpr3 963 . . . 4  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  Y  e.  B )
5 lautlt.b . . . . 5  |-  B  =  ( Base `  K
)
6 eqid 2296 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
7 lautlt.i . . . . 5  |-  I  =  ( LAut `  K
)
85, 6, 7lautle 30895 . . . 4  |-  ( ( ( K  e.  A  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( X ( le
`  K ) Y  <-> 
( F `  X
) ( le `  K ) ( F `
 Y ) ) )
91, 2, 3, 4, 8syl22anc 1183 . . 3  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X ( le `  K ) Y  <->  ( F `  X ) ( le
`  K ) ( F `  Y ) ) )
105, 7laut11 30897 . . . . . 6  |-  ( ( ( K  e.  A  /\  F  e.  I
)  /\  ( X  e.  B  /\  Y  e.  B ) )  -> 
( ( F `  X )  =  ( F `  Y )  <-> 
X  =  Y ) )
111, 2, 3, 4, 10syl22anc 1183 . . . . 5  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( F `  X
)  =  ( F `
 Y )  <->  X  =  Y ) )
1211bicomd 192 . . . 4  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X  =  Y  <->  ( F `  X )  =  ( F `  Y ) ) )
1312necon3bid 2494 . . 3  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X  =/=  Y  <->  ( F `  X )  =/=  ( F `  Y )
) )
149, 13anbi12d 691 . 2  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( X ( le
`  K ) Y  /\  X  =/=  Y
)  <->  ( ( F `
 X ) ( le `  K ) ( F `  Y
)  /\  ( F `  X )  =/=  ( F `  Y )
) ) )
15 lautlt.s . . . 4  |-  .<  =  ( lt `  K )
166, 15pltval 14110 . . 3  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  <->  ( X
( le `  K
) Y  /\  X  =/=  Y ) ) )
17163adant3r1 1160 . 2  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X  .<  Y  <->  ( X
( le `  K
) Y  /\  X  =/=  Y ) ) )
185, 7lautcl 30898 . . . 4  |-  ( ( ( K  e.  A  /\  F  e.  I
)  /\  X  e.  B )  ->  ( F `  X )  e.  B )
191, 2, 3, 18syl21anc 1181 . . 3  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  X )  e.  B )
205, 7lautcl 30898 . . . 4  |-  ( ( ( K  e.  A  /\  F  e.  I
)  /\  Y  e.  B )  ->  ( F `  Y )  e.  B )
211, 2, 4, 20syl21anc 1181 . . 3  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  Y )  e.  B )
226, 15pltval 14110 . . 3  |-  ( ( K  e.  A  /\  ( F `  X )  e.  B  /\  ( F `  Y )  e.  B )  ->  (
( F `  X
)  .<  ( F `  Y )  <->  ( ( F `  X )
( le `  K
) ( F `  Y )  /\  ( F `  X )  =/=  ( F `  Y
) ) ) )
231, 19, 21, 22syl3anc 1182 . 2  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( F `  X
)  .<  ( F `  Y )  <->  ( ( F `  X )
( le `  K
) ( F `  Y )  /\  ( F `  X )  =/=  ( F `  Y
) ) ) )
2414, 17, 233bitr4d 276 1  |-  ( ( K  e.  A  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X  .<  Y  <->  ( F `  X )  .<  ( F `  Y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271   Basecbs 13164   lecple 13231   ltcplt 14091   LAutclaut 30796
This theorem is referenced by:  lautcvr  30903
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-plt 14108  df-laut 30800
  Copyright terms: Public domain W3C validator