Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautm Structured version   Unicode version

Theorem lautm 30828
Description: Meet property of a lattice automorphism. (Contributed by NM, 19-May-2012.)
Hypotheses
Ref Expression
lautm.b  |-  B  =  ( Base `  K
)
lautm.m  |-  ./\  =  ( meet `  K )
lautm.i  |-  I  =  ( LAut `  K
)
Assertion
Ref Expression
lautm  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( X  ./\ 
Y ) )  =  ( ( F `  X )  ./\  ( F `  Y )
) )

Proof of Theorem lautm
StepHypRef Expression
1 lautm.b . 2  |-  B  =  ( Base `  K
)
2 eqid 2435 . 2  |-  ( le
`  K )  =  ( le `  K
)
3 simpl 444 . 2  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  K  e.  Lat )
4 simpr1 963 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  F  e.  I )
53, 4jca 519 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( K  e.  Lat  /\  F  e.  I ) )
6 lautm.m . . . . 5  |-  ./\  =  ( meet `  K )
71, 6latmcl 14472 . . . 4  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
)  e.  B )
873adant3r1 1162 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X  ./\  Y )  e.  B )
9 lautm.i . . . 4  |-  I  =  ( LAut `  K
)
101, 9lautcl 30821 . . 3  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  ( X  ./\  Y )  e.  B )  ->  ( F `  ( X  ./\  Y ) )  e.  B )
115, 8, 10syl2anc 643 . 2  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( X  ./\ 
Y ) )  e.  B )
12 simpr2 964 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  X  e.  B )
131, 9lautcl 30821 . . . 4  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  X  e.  B
)  ->  ( F `  X )  e.  B
)
145, 12, 13syl2anc 643 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  X )  e.  B )
15 simpr3 965 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  Y  e.  B )
161, 9lautcl 30821 . . . 4  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  Y  e.  B
)  ->  ( F `  Y )  e.  B
)
175, 15, 16syl2anc 643 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  Y )  e.  B )
181, 6latmcl 14472 . . 3  |-  ( ( K  e.  Lat  /\  ( F `  X )  e.  B  /\  ( F `  Y )  e.  B )  ->  (
( F `  X
)  ./\  ( F `  Y ) )  e.  B )
193, 14, 17, 18syl3anc 1184 . 2  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( F `  X
)  ./\  ( F `  Y ) )  e.  B )
201, 2, 6latmle1 14497 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
) ( le `  K ) X )
21203adant3r1 1162 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X  ./\  Y ) ( le `  K ) X )
221, 2, 9lautle 30818 . . . . 5  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  ( ( X 
./\  Y )  e.  B  /\  X  e.  B ) )  -> 
( ( X  ./\  Y ) ( le `  K ) X  <->  ( F `  ( X  ./\  Y
) ) ( le
`  K ) ( F `  X ) ) )
235, 8, 12, 22syl12anc 1182 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( X  ./\  Y
) ( le `  K ) X  <->  ( F `  ( X  ./\  Y
) ) ( le
`  K ) ( F `  X ) ) )
2421, 23mpbid 202 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( X  ./\ 
Y ) ) ( le `  K ) ( F `  X
) )
251, 2, 6latmle2 14498 . . . . 5  |-  ( ( K  e.  Lat  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  ./\  Y
) ( le `  K ) Y )
26253adant3r1 1162 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( X  ./\  Y ) ( le `  K ) Y )
271, 2, 9lautle 30818 . . . . 5  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  ( ( X 
./\  Y )  e.  B  /\  Y  e.  B ) )  -> 
( ( X  ./\  Y ) ( le `  K ) Y  <->  ( F `  ( X  ./\  Y
) ) ( le
`  K ) ( F `  Y ) ) )
285, 8, 15, 27syl12anc 1182 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( X  ./\  Y
) ( le `  K ) Y  <->  ( F `  ( X  ./\  Y
) ) ( le
`  K ) ( F `  Y ) ) )
2926, 28mpbid 202 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( X  ./\ 
Y ) ) ( le `  K ) ( F `  Y
) )
301, 2, 6latlem12 14499 . . . 4  |-  ( ( K  e.  Lat  /\  ( ( F `  ( X  ./\  Y ) )  e.  B  /\  ( F `  X )  e.  B  /\  ( F `  Y )  e.  B ) )  -> 
( ( ( F `
 ( X  ./\  Y ) ) ( le
`  K ) ( F `  X )  /\  ( F `  ( X  ./\  Y ) ) ( le `  K ) ( F `
 Y ) )  <-> 
( F `  ( X  ./\  Y ) ) ( le `  K
) ( ( F `
 X )  ./\  ( F `  Y ) ) ) )
313, 11, 14, 17, 30syl13anc 1186 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( ( F `  ( X  ./\  Y ) ) ( le `  K ) ( F `
 X )  /\  ( F `  ( X 
./\  Y ) ) ( le `  K
) ( F `  Y ) )  <->  ( F `  ( X  ./\  Y
) ) ( le
`  K ) ( ( F `  X
)  ./\  ( F `  Y ) ) ) )
3224, 29, 31mpbi2and 888 . 2  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( X  ./\ 
Y ) ) ( le `  K ) ( ( F `  X )  ./\  ( F `  Y )
) )
331, 9laut1o 30819 . . . . 5  |-  ( ( K  e.  Lat  /\  F  e.  I )  ->  F : B -1-1-onto-> B )
34333ad2antr1 1122 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  F : B -1-1-onto-> B )
35 f1ocnvfv2 6007 . . . 4  |-  ( ( F : B -1-1-onto-> B  /\  ( ( F `  X )  ./\  ( F `  Y )
)  e.  B )  ->  ( F `  ( `' F `  ( ( F `  X ) 
./\  ( F `  Y ) ) ) )  =  ( ( F `  X ) 
./\  ( F `  Y ) ) )
3634, 19, 35syl2anc 643 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( `' F `  ( ( F `  X )  ./\  ( F `  Y
) ) ) )  =  ( ( F `
 X )  ./\  ( F `  Y ) ) )
371, 2, 6latmle1 14497 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( F `  X )  e.  B  /\  ( F `  Y )  e.  B )  ->  (
( F `  X
)  ./\  ( F `  Y ) ) ( le `  K ) ( F `  X
) )
383, 14, 17, 37syl3anc 1184 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( F `  X
)  ./\  ( F `  Y ) ) ( le `  K ) ( F `  X
) )
391, 2, 9lautcnvle 30823 . . . . . . . 8  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  ( ( ( F `  X ) 
./\  ( F `  Y ) )  e.  B  /\  ( F `
 X )  e.  B ) )  -> 
( ( ( F `
 X )  ./\  ( F `  Y ) ) ( le `  K ) ( F `
 X )  <->  ( `' F `  ( ( F `  X )  ./\  ( F `  Y
) ) ) ( le `  K ) ( `' F `  ( F `  X ) ) ) )
405, 19, 14, 39syl12anc 1182 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( ( F `  X )  ./\  ( F `  Y )
) ( le `  K ) ( F `
 X )  <->  ( `' F `  ( ( F `  X )  ./\  ( F `  Y
) ) ) ( le `  K ) ( `' F `  ( F `  X ) ) ) )
4138, 40mpbid 202 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( `' F `  ( ( F `  X ) 
./\  ( F `  Y ) ) ) ( le `  K
) ( `' F `  ( F `  X
) ) )
42 f1ocnvfv1 6006 . . . . . . 7  |-  ( ( F : B -1-1-onto-> B  /\  X  e.  B )  ->  ( `' F `  ( F `  X ) )  =  X )
4334, 12, 42syl2anc 643 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( `' F `  ( F `
 X ) )  =  X )
4441, 43breqtrd 4228 . . . . 5  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( `' F `  ( ( F `  X ) 
./\  ( F `  Y ) ) ) ( le `  K
) X )
451, 2, 6latmle2 14498 . . . . . . . 8  |-  ( ( K  e.  Lat  /\  ( F `  X )  e.  B  /\  ( F `  Y )  e.  B )  ->  (
( F `  X
)  ./\  ( F `  Y ) ) ( le `  K ) ( F `  Y
) )
463, 14, 17, 45syl3anc 1184 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( F `  X
)  ./\  ( F `  Y ) ) ( le `  K ) ( F `  Y
) )
471, 2, 9lautcnvle 30823 . . . . . . . 8  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  ( ( ( F `  X ) 
./\  ( F `  Y ) )  e.  B  /\  ( F `
 Y )  e.  B ) )  -> 
( ( ( F `
 X )  ./\  ( F `  Y ) ) ( le `  K ) ( F `
 Y )  <->  ( `' F `  ( ( F `  X )  ./\  ( F `  Y
) ) ) ( le `  K ) ( `' F `  ( F `  Y ) ) ) )
485, 19, 17, 47syl12anc 1182 . . . . . . 7  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( ( F `  X )  ./\  ( F `  Y )
) ( le `  K ) ( F `
 Y )  <->  ( `' F `  ( ( F `  X )  ./\  ( F `  Y
) ) ) ( le `  K ) ( `' F `  ( F `  Y ) ) ) )
4946, 48mpbid 202 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( `' F `  ( ( F `  X ) 
./\  ( F `  Y ) ) ) ( le `  K
) ( `' F `  ( F `  Y
) ) )
50 f1ocnvfv1 6006 . . . . . . 7  |-  ( ( F : B -1-1-onto-> B  /\  Y  e.  B )  ->  ( `' F `  ( F `  Y ) )  =  Y )
5134, 15, 50syl2anc 643 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( `' F `  ( F `
 Y ) )  =  Y )
5249, 51breqtrd 4228 . . . . 5  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( `' F `  ( ( F `  X ) 
./\  ( F `  Y ) ) ) ( le `  K
) Y )
53 f1ocnvdm 6010 . . . . . . 7  |-  ( ( F : B -1-1-onto-> B  /\  ( ( F `  X )  ./\  ( F `  Y )
)  e.  B )  ->  ( `' F `  ( ( F `  X )  ./\  ( F `  Y )
) )  e.  B
)
5434, 19, 53syl2anc 643 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( `' F `  ( ( F `  X ) 
./\  ( F `  Y ) ) )  e.  B )
551, 2, 6latlem12 14499 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( ( `' F `  ( ( F `  X )  ./\  ( F `  Y )
) )  e.  B  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( ( `' F `  ( ( F `  X )  ./\  ( F `  Y )
) ) ( le
`  K ) X  /\  ( `' F `  ( ( F `  X )  ./\  ( F `  Y )
) ) ( le
`  K ) Y )  <->  ( `' F `  ( ( F `  X )  ./\  ( F `  Y )
) ) ( le
`  K ) ( X  ./\  Y )
) )
563, 54, 12, 15, 55syl13anc 1186 . . . . 5  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( ( `' F `  ( ( F `  X )  ./\  ( F `  Y )
) ) ( le
`  K ) X  /\  ( `' F `  ( ( F `  X )  ./\  ( F `  Y )
) ) ( le
`  K ) Y )  <->  ( `' F `  ( ( F `  X )  ./\  ( F `  Y )
) ) ( le
`  K ) ( X  ./\  Y )
) )
5744, 52, 56mpbi2and 888 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( `' F `  ( ( F `  X ) 
./\  ( F `  Y ) ) ) ( le `  K
) ( X  ./\  Y ) )
581, 2, 9lautle 30818 . . . . 5  |-  ( ( ( K  e.  Lat  /\  F  e.  I )  /\  ( ( `' F `  ( ( F `  X ) 
./\  ( F `  Y ) ) )  e.  B  /\  ( X  ./\  Y )  e.  B ) )  -> 
( ( `' F `  ( ( F `  X )  ./\  ( F `  Y )
) ) ( le
`  K ) ( X  ./\  Y )  <->  ( F `  ( `' F `  ( ( F `  X ) 
./\  ( F `  Y ) ) ) ) ( le `  K ) ( F `
 ( X  ./\  Y ) ) ) )
595, 54, 8, 58syl12anc 1182 . . . 4  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( `' F `  ( ( F `  X )  ./\  ( F `  Y )
) ) ( le
`  K ) ( X  ./\  Y )  <->  ( F `  ( `' F `  ( ( F `  X ) 
./\  ( F `  Y ) ) ) ) ( le `  K ) ( F `
 ( X  ./\  Y ) ) ) )
6057, 59mpbid 202 . . 3  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( `' F `  ( ( F `  X )  ./\  ( F `  Y
) ) ) ) ( le `  K
) ( F `  ( X  ./\  Y ) ) )
6136, 60eqbrtrrd 4226 . 2  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  (
( F `  X
)  ./\  ( F `  Y ) ) ( le `  K ) ( F `  ( X  ./\  Y ) ) )
621, 2, 3, 11, 19, 32, 61latasymd 14478 1  |-  ( ( K  e.  Lat  /\  ( F  e.  I  /\  X  e.  B  /\  Y  e.  B
) )  ->  ( F `  ( X  ./\ 
Y ) )  =  ( ( F `  X )  ./\  ( F `  Y )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4204   `'ccnv 4869   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   Basecbs 13461   lecple 13528   meetcmee 14394   Latclat 14466   LAutclaut 30719
This theorem is referenced by:  ltrnm  30865
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-undef 6535  df-riota 6541  df-map 7012  df-poset 14395  df-glb 14424  df-meet 14426  df-lat 14467  df-laut 30723
  Copyright terms: Public domain W3C validator