Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautset Unicode version

Theorem lautset 30893
Description: The set of lattice automorphisms. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
lautset.b  |-  B  =  ( Base `  K
)
lautset.l  |-  .<_  =  ( le `  K )
lautset.i  |-  I  =  ( LAut `  K
)
Assertion
Ref Expression
lautset  |-  ( K  e.  A  ->  I  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
Distinct variable groups:    x, f,
y, B    f, K, x, y    .<_ , f
Allowed substitution hints:    A( x, y, f)    I( x, y, f)    .<_ ( x, y)

Proof of Theorem lautset
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 2809 . 2  |-  ( K  e.  A  ->  K  e.  _V )
2 lautset.i . . 3  |-  I  =  ( LAut `  K
)
3 fveq2 5541 . . . . . . . . 9  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
4 lautset.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
53, 4syl6eqr 2346 . . . . . . . 8  |-  ( k  =  K  ->  ( Base `  k )  =  B )
6 f1oeq2 5480 . . . . . . . 8  |-  ( (
Base `  k )  =  B  ->  ( f : ( Base `  k
)
-1-1-onto-> ( Base `  k )  <->  f : B -1-1-onto-> ( Base `  k
) ) )
75, 6syl 15 . . . . . . 7  |-  ( k  =  K  ->  (
f : ( Base `  k ) -1-1-onto-> ( Base `  k
)  <->  f : B -1-1-onto-> ( Base `  k ) ) )
8 f1oeq3 5481 . . . . . . . 8  |-  ( (
Base `  k )  =  B  ->  ( f : B -1-1-onto-> ( Base `  k
)  <->  f : B -1-1-onto-> B
) )
95, 8syl 15 . . . . . . 7  |-  ( k  =  K  ->  (
f : B -1-1-onto-> ( Base `  k )  <->  f : B
-1-1-onto-> B ) )
107, 9bitrd 244 . . . . . 6  |-  ( k  =  K  ->  (
f : ( Base `  k ) -1-1-onto-> ( Base `  k
)  <->  f : B -1-1-onto-> B
) )
11 fveq2 5541 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
12 lautset.l . . . . . . . . . . 11  |-  .<_  =  ( le `  K )
1311, 12syl6eqr 2346 . . . . . . . . . 10  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
1413breqd 4050 . . . . . . . . 9  |-  ( k  =  K  ->  (
x ( le `  k ) y  <->  x  .<_  y ) )
1513breqd 4050 . . . . . . . . 9  |-  ( k  =  K  ->  (
( f `  x
) ( le `  k ) ( f `
 y )  <->  ( f `  x )  .<_  ( f `
 y ) ) )
1614, 15bibi12d 312 . . . . . . . 8  |-  ( k  =  K  ->  (
( x ( le
`  k ) y  <-> 
( f `  x
) ( le `  k ) ( f `
 y ) )  <-> 
( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) )
175, 16raleqbidv 2761 . . . . . . 7  |-  ( k  =  K  ->  ( A. y  e.  ( Base `  k ) ( x ( le `  k ) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) )  <->  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) )
185, 17raleqbidv 2761 . . . . . 6  |-  ( k  =  K  ->  ( A. x  e.  ( Base `  k ) A. y  e.  ( Base `  k ) ( x ( le `  k
) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) )  <->  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) )
1910, 18anbi12d 691 . . . . 5  |-  ( k  =  K  ->  (
( f : (
Base `  k ) -1-1-onto-> ( Base `  k )  /\  A. x  e.  ( Base `  k ) A. y  e.  ( Base `  k
) ( x ( le `  k ) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) ) )  <->  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) ) )
2019abbidv 2410 . . . 4  |-  ( k  =  K  ->  { f  |  ( f : ( Base `  k
)
-1-1-onto-> ( Base `  k )  /\  A. x  e.  (
Base `  k ) A. y  e.  ( Base `  k ) ( x ( le `  k ) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) ) ) }  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
21 df-laut 30800 . . . 4  |-  LAut  =  ( k  e.  _V  |->  { f  |  ( f : ( Base `  k ) -1-1-onto-> ( Base `  k
)  /\  A. x  e.  ( Base `  k
) A. y  e.  ( Base `  k
) ( x ( le `  k ) y  <->  ( f `  x ) ( le
`  k ) ( f `  y ) ) ) } )
22 fvex 5555 . . . . . . . . 9  |-  ( Base `  K )  e.  _V
234, 22eqeltri 2366 . . . . . . . 8  |-  B  e. 
_V
2423, 23mapval 6800 . . . . . . 7  |-  ( B  ^m  B )  =  { f  |  f : B --> B }
25 ovex 5899 . . . . . . 7  |-  ( B  ^m  B )  e. 
_V
2624, 25eqeltrri 2367 . . . . . 6  |-  { f  |  f : B --> B }  e.  _V
27 f1of 5488 . . . . . . 7  |-  ( f : B -1-1-onto-> B  ->  f : B
--> B )
2827ss2abi 3258 . . . . . 6  |-  { f  |  f : B -1-1-onto-> B }  C_  { f  |  f : B --> B }
2926, 28ssexi 4175 . . . . 5  |-  { f  |  f : B -1-1-onto-> B }  e.  _V
30 simpl 443 . . . . . 6  |-  ( ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) )  ->  f : B
-1-1-onto-> B )
3130ss2abi 3258 . . . . 5  |-  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) }  C_  { f  |  f : B -1-1-onto-> B }
3229, 31ssexi 4175 . . . 4  |-  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  ( x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) }  e.  _V
3320, 21, 32fvmpt 5618 . . 3  |-  ( K  e.  _V  ->  ( LAut `  K )  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
342, 33syl5eq 2340 . 2  |-  ( K  e.  _V  ->  I  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
351, 34syl 15 1  |-  ( K  e.  A  ->  I  =  { f  |  ( f : B -1-1-onto-> B  /\  A. x  e.  B  A. y  e.  B  (
x  .<_  y  <->  ( f `  x )  .<_  ( f `
 y ) ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696   {cab 2282   A.wral 2556   _Vcvv 2801   class class class wbr 4039   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874    ^m cmap 6788   Basecbs 13164   lecple 13231   LAutclaut 30796
This theorem is referenced by:  islaut  30894
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-laut 30800
  Copyright terms: Public domain W3C validator