MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbinfmle Structured version   Unicode version

Theorem lbinfmle 9955
Description: If a set of reals contains a lower bound, its infmimum is less than or equal to all members of the set. (Contributed by NM, 11-Oct-2005.)
Assertion
Ref Expression
lbinfmle  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y  /\  A  e.  S )  ->  sup ( S ,  RR ,  `'  <  )  <_  A
)
Distinct variable groups:    x, y, S    y, A
Allowed substitution hint:    A( x)

Proof of Theorem lbinfmle
StepHypRef Expression
1 lbinfm 9953 . . 3  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y )  ->  sup ( S ,  RR ,  `'  <  )  =  (
iota_ x  e.  S A. y  e.  S  x  <_  y ) )
213adant3 977 . 2  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y  /\  A  e.  S )  ->  sup ( S ,  RR ,  `'  <  )  =  (
iota_ x  e.  S A. y  e.  S  x  <_  y ) )
3 lble 9952 . 2  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y  /\  A  e.  S )  ->  ( iota_ x  e.  S A. y  e.  S  x  <_  y )  <_  A
)
42, 3eqbrtrd 4224 1  |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y  /\  A  e.  S )  ->  sup ( S ,  RR ,  `'  <  )  <_  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    C_ wss 3312   class class class wbr 4204   `'ccnv 4869   iota_crio 6534   supcsup 7437   RRcr 8981    < clt 9112    <_ cle 9113
This theorem is referenced by:  infmssuzle  10550  rencldnfilem  26872  stoweidlem29  27745
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-pre-lttri 9056  ax-pre-lttrn 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-sup 7438  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118
  Copyright terms: Public domain W3C validator