MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem3 Unicode version

Theorem lbsextlem3 15913
Description: Lemma for lbsext 15916. A chain in  S has an upper bound in  S. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v  |-  V  =  ( Base `  W
)
lbsext.j  |-  J  =  (LBasis `  W )
lbsext.n  |-  N  =  ( LSpan `  W )
lbsext.w  |-  ( ph  ->  W  e.  LVec )
lbsext.c  |-  ( ph  ->  C  C_  V )
lbsext.x  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
lbsext.s  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
lbsext.p  |-  P  =  ( LSubSp `  W )
lbsext.a  |-  ( ph  ->  A  C_  S )
lbsext.z  |-  ( ph  ->  A  =/=  (/) )
lbsext.r  |-  ( ph  -> [ C.]  Or  A )
lbsext.t  |-  T  = 
U_ u  e.  A  ( N `  ( u 
\  { x }
) )
Assertion
Ref Expression
lbsextlem3  |-  ( ph  ->  U. A  e.  S
)
Distinct variable groups:    x, J    x, u, ph    u, S, x   
x, z, C    z, u, N, x    u, V, x, z    u, W, x    u, A, x, z
Allowed substitution hints:    ph( z)    C( u)    P( x, z, u)    S( z)    T( x, z, u)    J( z, u)    W( z)

Proof of Theorem lbsextlem3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 lbsext.a . . . . 5  |-  ( ph  ->  A  C_  S )
2 lbsext.s . . . . . 6  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
3 ssrab2 3258 . . . . . 6  |-  { z  e.  ~P V  | 
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) ) } 
C_  ~P V
42, 3eqsstri 3208 . . . . 5  |-  S  C_  ~P V
51, 4syl6ss 3191 . . . 4  |-  ( ph  ->  A  C_  ~P V
)
6 sspwuni 3987 . . . 4  |-  ( A 
C_  ~P V  <->  U. A  C_  V )
75, 6sylib 188 . . 3  |-  ( ph  ->  U. A  C_  V
)
8 lbsext.v . . . . 5  |-  V  =  ( Base `  W
)
9 fvex 5539 . . . . 5  |-  ( Base `  W )  e.  _V
108, 9eqeltri 2353 . . . 4  |-  V  e. 
_V
1110elpw2 4175 . . 3  |-  ( U. A  e.  ~P V  <->  U. A  C_  V )
127, 11sylibr 203 . 2  |-  ( ph  ->  U. A  e.  ~P V )
13 ssintub 3880 . . . . 5  |-  C  C_  |^|
{ z  e.  ~P V  |  C  C_  z }
14 simpl 443 . . . . . . . . . 10  |-  ( ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `
 ( z  \  { x } ) ) )  ->  C  C_  z )
1514a1i 10 . . . . . . . . 9  |-  ( z  e.  ~P V  -> 
( ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) )  ->  C  C_  z
) )
1615ss2rabi 3255 . . . . . . . 8  |-  { z  e.  ~P V  | 
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) ) } 
C_  { z  e. 
~P V  |  C  C_  z }
172, 16eqsstri 3208 . . . . . . 7  |-  S  C_  { z  e.  ~P V  |  C  C_  z }
181, 17syl6ss 3191 . . . . . 6  |-  ( ph  ->  A  C_  { z  e.  ~P V  |  C  C_  z } )
19 intss 3883 . . . . . 6  |-  ( A 
C_  { z  e. 
~P V  |  C  C_  z }  ->  |^| { z  e.  ~P V  |  C  C_  z }  C_  |^| A )
2018, 19syl 15 . . . . 5  |-  ( ph  ->  |^| { z  e. 
~P V  |  C  C_  z }  C_  |^| A
)
2113, 20syl5ss 3190 . . . 4  |-  ( ph  ->  C  C_  |^| A )
22 lbsext.z . . . . 5  |-  ( ph  ->  A  =/=  (/) )
23 intssuni 3884 . . . . 5  |-  ( A  =/=  (/)  ->  |^| A  C_  U. A )
2422, 23syl 15 . . . 4  |-  ( ph  ->  |^| A  C_  U. A
)
2521, 24sstrd 3189 . . 3  |-  ( ph  ->  C  C_  U. A )
26 eluni2 3831 . . . . 5  |-  ( x  e.  U. A  <->  E. y  e.  A  x  e.  y )
27 simpll1 994 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  ph )
28 lbsext.w . . . . . . . . . . . . 13  |-  ( ph  ->  W  e.  LVec )
29 lveclmod 15859 . . . . . . . . . . . . 13  |-  ( W  e.  LVec  ->  W  e. 
LMod )
3028, 29syl 15 . . . . . . . . . . . 12  |-  ( ph  ->  W  e.  LMod )
3127, 30syl 15 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  W  e.  LMod )
32 difss 3303 . . . . . . . . . . . 12  |-  ( ( y  u.  u ) 
\  { x }
)  C_  ( y  u.  u )
3327, 1syl 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  A  C_  S )
34 lbsext.r . . . . . . . . . . . . . . . . 17  |-  ( ph  -> [ C.]  Or  A )
3527, 34syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> [ C.]  Or  A )
36 simpll2 995 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
y  e.  A )
37 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  u  e.  A )
38 sorpssun 6284 . . . . . . . . . . . . . . . 16  |-  ( ( [
C.]  Or  A  /\  ( y  e.  A  /\  u  e.  A
) )  ->  (
y  u.  u )  e.  A )
3935, 36, 37, 38syl12anc 1180 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( y  u.  u
)  e.  A )
4033, 39sseldd 3181 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( y  u.  u
)  e.  S )
414, 40sseldi 3178 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( y  u.  u
)  e.  ~P V
)
42 elpwi 3633 . . . . . . . . . . . . 13  |-  ( ( y  u.  u )  e.  ~P V  -> 
( y  u.  u
)  C_  V )
4341, 42syl 15 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( y  u.  u
)  C_  V )
4432, 43syl5ss 3190 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( ( y  u.  u )  \  {
x } )  C_  V )
45 ssun2 3339 . . . . . . . . . . . 12  |-  u  C_  ( y  u.  u
)
46 ssdif 3311 . . . . . . . . . . . 12  |-  ( u 
C_  ( y  u.  u )  ->  (
u  \  { x } )  C_  (
( y  u.  u
)  \  { x } ) )
4745, 46mp1i 11 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( u  \  {
x } )  C_  ( ( y  u.  u )  \  {
x } ) )
48 lbsext.n . . . . . . . . . . . 12  |-  N  =  ( LSpan `  W )
498, 48lspss 15741 . . . . . . . . . . 11  |-  ( ( W  e.  LMod  /\  (
( y  u.  u
)  \  { x } )  C_  V  /\  ( u  \  {
x } )  C_  ( ( y  u.  u )  \  {
x } ) )  ->  ( N `  ( u  \  { x } ) )  C_  ( N `  ( ( y  u.  u ) 
\  { x }
) ) )
5031, 44, 47, 49syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  -> 
( N `  (
u  \  { x } ) )  C_  ( N `  ( ( y  u.  u ) 
\  { x }
) ) )
51 simpr 447 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  x  e.  ( N `  ( u  \  {
x } ) ) )
5250, 51sseldd 3181 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  x  e.  ( N `  ( ( y  u.  u )  \  {
x } ) ) )
53 sseq2 3200 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  u )  ->  ( C  C_  z  <->  C  C_  (
y  u.  u ) ) )
54 difeq1 3287 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  ( y  u.  u )  ->  (
z  \  { x } )  =  ( ( y  u.  u
)  \  { x } ) )
5554fveq2d 5529 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( y  u.  u )  ->  ( N `  ( z  \  { x } ) )  =  ( N `
 ( ( y  u.  u )  \  { x } ) ) )
5655eleq2d 2350 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( y  u.  u )  ->  (
x  e.  ( N `
 ( z  \  { x } ) )  <->  x  e.  ( N `  ( (
y  u.  u ) 
\  { x }
) ) ) )
5756notbid 285 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  u.  u )  ->  ( -.  x  e.  ( N `  ( z  \  { x } ) )  <->  -.  x  e.  ( N `  ( ( y  u.  u ) 
\  { x }
) ) ) )
5857raleqbi1dv 2744 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  u )  ->  ( A. x  e.  z  -.  x  e.  ( N `  ( z  \  { x } ) )  <->  A. x  e.  ( y  u.  u )  -.  x  e.  ( N `  ( ( y  u.  u ) 
\  { x }
) ) ) )
5953, 58anbi12d 691 . . . . . . . . . . . . . 14  |-  ( z  =  ( y  u.  u )  ->  (
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) )  <->  ( C  C_  ( y  u.  u
)  /\  A. x  e.  ( y  u.  u
)  -.  x  e.  ( N `  (
( y  u.  u
)  \  { x } ) ) ) ) )
6059, 2elrab2 2925 . . . . . . . . . . . . 13  |-  ( ( y  u.  u )  e.  S  <->  ( (
y  u.  u )  e.  ~P V  /\  ( C  C_  ( y  u.  u )  /\  A. x  e.  ( y  u.  u )  -.  x  e.  ( N `
 ( ( y  u.  u )  \  { x } ) ) ) ) )
6160simprbi 450 . . . . . . . . . . . 12  |-  ( ( y  u.  u )  e.  S  ->  ( C  C_  ( y  u.  u )  /\  A. x  e.  ( y  u.  u )  -.  x  e.  ( N `  (
( y  u.  u
)  \  { x } ) ) ) )
6261simprd 449 . . . . . . . . . . 11  |-  ( ( y  u.  u )  e.  S  ->  A. x  e.  ( y  u.  u
)  -.  x  e.  ( N `  (
( y  u.  u
)  \  { x } ) ) )
6340, 62syl 15 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  A. x  e.  (
y  u.  u )  -.  x  e.  ( N `  ( ( y  u.  u ) 
\  { x }
) ) )
64 simpll3 996 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  x  e.  y )
65 elun1 3342 . . . . . . . . . . 11  |-  ( x  e.  y  ->  x  e.  ( y  u.  u
) )
6664, 65syl 15 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  x  e.  ( y  u.  u ) )
67 rsp 2603 . . . . . . . . . 10  |-  ( A. x  e.  ( y  u.  u )  -.  x  e.  ( N `  (
( y  u.  u
)  \  { x } ) )  -> 
( x  e.  ( y  u.  u )  ->  -.  x  e.  ( N `  ( ( y  u.  u ) 
\  { x }
) ) ) )
6863, 66, 67sylc 56 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A
)  /\  x  e.  ( N `  ( u 
\  { x }
) ) )  ->  -.  x  e.  ( N `  ( (
y  u.  u ) 
\  { x }
) ) )
6952, 68pm2.65da 559 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  A  /\  x  e.  y )  /\  u  e.  A )  ->  -.  x  e.  ( N `  ( u  \  {
x } ) ) )
7069nrexdv 2646 . . . . . . 7  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  -.  E. u  e.  A  x  e.  ( N `  ( u 
\  { x }
) ) )
71 lbsext.j . . . . . . . . . . . . . . . 16  |-  J  =  (LBasis `  W )
72 lbsext.c . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  C_  V )
73 lbsext.x . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
74 lbsext.p . . . . . . . . . . . . . . . 16  |-  P  =  ( LSubSp `  W )
75 lbsext.t . . . . . . . . . . . . . . . 16  |-  T  = 
U_ u  e.  A  ( N `  ( u 
\  { x }
) )
768, 71, 48, 28, 72, 73, 2, 74, 1, 22, 34, 75lbsextlem2 15912 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( T  e.  P  /\  ( U. A  \  { x } ) 
C_  T ) )
7776simpld 445 . . . . . . . . . . . . . 14  |-  ( ph  ->  T  e.  P )
788, 74lssss 15694 . . . . . . . . . . . . . 14  |-  ( T  e.  P  ->  T  C_  V )
7977, 78syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  T  C_  V )
8076simprd 449 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U. A  \  { x } ) 
C_  T )
818, 48lspss 15741 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  T  C_  V  /\  ( U. A  \  { x }
)  C_  T )  ->  ( N `  ( U. A  \  { x } ) )  C_  ( N `  T ) )
8230, 79, 80, 81syl3anc 1182 . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  ( U. A  \  { x } ) )  C_  ( N `  T ) )
8374, 48lspid 15739 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  T  e.  P )  ->  ( N `  T )  =  T )
8430, 77, 83syl2anc 642 . . . . . . . . . . . 12  |-  ( ph  ->  ( N `  T
)  =  T )
8582, 84sseqtrd 3214 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  ( U. A  \  { x } ) )  C_  T )
86853ad2ant1 976 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  ( N `  ( U. A  \  { x } ) )  C_  T )
8786, 75syl6sseq 3224 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  ( N `  ( U. A  \  { x } ) )  C_  U_ u  e.  A  ( N `  ( u  \  { x } ) ) )
8887sseld 3179 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  ( x  e.  ( N `  ( U. A  \  { x } ) )  ->  x  e.  U_ u  e.  A  ( N `  ( u  \  { x } ) ) ) )
89 eliun 3909 . . . . . . . 8  |-  ( x  e.  U_ u  e.  A  ( N `  ( u  \  { x } ) )  <->  E. u  e.  A  x  e.  ( N `  ( u 
\  { x }
) ) )
9088, 89syl6ib 217 . . . . . . 7  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  ( x  e.  ( N `  ( U. A  \  { x } ) )  ->  E. u  e.  A  x  e.  ( N `  ( u  \  {
x } ) ) ) )
9170, 90mtod 168 . . . . . 6  |-  ( (
ph  /\  y  e.  A  /\  x  e.  y )  ->  -.  x  e.  ( N `  ( U. A  \  { x } ) ) )
9291rexlimdv3a 2669 . . . . 5  |-  ( ph  ->  ( E. y  e.  A  x  e.  y  ->  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) )
9326, 92syl5bi 208 . . . 4  |-  ( ph  ->  ( x  e.  U. A  ->  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) )
9493ralrimiv 2625 . . 3  |-  ( ph  ->  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x }
) ) )
9525, 94jca 518 . 2  |-  ( ph  ->  ( C  C_  U. A  /\  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) )
96 sseq2 3200 . . . 4  |-  ( z  =  U. A  -> 
( C  C_  z  <->  C 
C_  U. A ) )
97 difeq1 3287 . . . . . . . 8  |-  ( z  =  U. A  -> 
( z  \  {
x } )  =  ( U. A  \  { x } ) )
9897fveq2d 5529 . . . . . . 7  |-  ( z  =  U. A  -> 
( N `  (
z  \  { x } ) )  =  ( N `  ( U. A  \  { x } ) ) )
9998eleq2d 2350 . . . . . 6  |-  ( z  =  U. A  -> 
( x  e.  ( N `  ( z 
\  { x }
) )  <->  x  e.  ( N `  ( U. A  \  { x }
) ) ) )
10099notbid 285 . . . . 5  |-  ( z  =  U. A  -> 
( -.  x  e.  ( N `  (
z  \  { x } ) )  <->  -.  x  e.  ( N `  ( U. A  \  { x } ) ) ) )
101100raleqbi1dv 2744 . . . 4  |-  ( z  =  U. A  -> 
( A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) )  <->  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x } ) ) ) )
10296, 101anbi12d 691 . . 3  |-  ( z  =  U. A  -> 
( ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) )  <-> 
( C  C_  U. A  /\  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) ) )
103102, 2elrab2 2925 . 2  |-  ( U. A  e.  S  <->  ( U. A  e.  ~P V  /\  ( C  C_  U. A  /\  A. x  e.  U. A  -.  x  e.  ( N `  ( U. A  \  { x }
) ) ) ) )
10412, 95, 103sylanbrc 645 1  |-  ( ph  ->  U. A  e.  S
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547   _Vcvv 2788    \ cdif 3149    u. cun 3150    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   U.cuni 3827   |^|cint 3862   U_ciun 3905    Or wor 4313   ` cfv 5255   [ C.] crpss 6276   Basecbs 13148   LModclmod 15627   LSubSpclss 15689   LSpanclspn 15728  LBasisclbs 15827   LVecclvec 15855
This theorem is referenced by:  lbsextlem4  15914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-rpss 6277  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-mgp 15326  df-rng 15340  df-ur 15342  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lvec 15856
  Copyright terms: Public domain W3C validator