MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem4 Unicode version

Theorem lbsextlem4 15914
Description: Lemma for lbsext 15916. lbsextlem3 15913 satisfies the conditions for the application of Zorn's lemma zorn 8134 (thus invoking AC), and so there is a maximal linearly independent set extending  C. Here we prove that such a set is a basis. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v  |-  V  =  ( Base `  W
)
lbsext.j  |-  J  =  (LBasis `  W )
lbsext.n  |-  N  =  ( LSpan `  W )
lbsext.w  |-  ( ph  ->  W  e.  LVec )
lbsext.c  |-  ( ph  ->  C  C_  V )
lbsext.x  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
lbsext.s  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
lbsext.k  |-  ( ph  ->  ~P V  e.  dom  card )
Assertion
Ref Expression
lbsextlem4  |-  ( ph  ->  E. s  e.  J  C  C_  s )
Distinct variable groups:    x, J    ph, x, s    S, s, x    x, z, C   
x, N, z    x, V, z    x, W    z,
s    ph, s
Allowed substitution hints:    ph( z)    C( s)    S( z)    J( z, s)    N( s)    V( s)    W( z, s)

Proof of Theorem lbsextlem4
Dummy variables  u  w  y  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lbsext.k . . . 4  |-  ( ph  ->  ~P V  e.  dom  card )
2 lbsext.s . . . . 5  |-  S  =  { z  e.  ~P V  |  ( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) ) ) }
3 ssrab2 3258 . . . . 5  |-  { z  e.  ~P V  | 
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) ) } 
C_  ~P V
42, 3eqsstri 3208 . . . 4  |-  S  C_  ~P V
5 ssnum 7666 . . . 4  |-  ( ( ~P V  e.  dom  card  /\  S  C_  ~P V
)  ->  S  e.  dom  card )
61, 4, 5sylancl 643 . . 3  |-  ( ph  ->  S  e.  dom  card )
7 lbsext.v . . . 4  |-  V  =  ( Base `  W
)
8 lbsext.j . . . 4  |-  J  =  (LBasis `  W )
9 lbsext.n . . . 4  |-  N  =  ( LSpan `  W )
10 lbsext.w . . . 4  |-  ( ph  ->  W  e.  LVec )
11 lbsext.c . . . 4  |-  ( ph  ->  C  C_  V )
12 lbsext.x . . . 4  |-  ( ph  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x } ) ) )
137, 8, 9, 10, 11, 12, 2lbsextlem1 15911 . . 3  |-  ( ph  ->  S  =/=  (/) )
1410adantr 451 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  W  e.  LVec )
1511adantr 451 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  C  C_  V )
1612adantr 451 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  A. x  e.  C  -.  x  e.  ( N `  ( C  \  { x }
) ) )
17 eqid 2283 . . . . . 6  |-  ( LSubSp `  W )  =  (
LSubSp `  W )
18 simpr1 961 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  y  C_  S )
19 simpr2 962 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  y  =/=  (/) )
20 simpr3 963 . . . . . 6  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  -> [ C.]  Or  y )
21 eqid 2283 . . . . . 6  |-  U_ u  e.  y  ( N `  ( u  \  {
x } ) )  =  U_ u  e.  y  ( N `  ( u  \  { x } ) )
227, 8, 9, 14, 15, 16, 2, 17, 18, 19, 20, 21lbsextlem3 15913 . . . . 5  |-  ( (
ph  /\  ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
) )  ->  U. y  e.  S )
2322ex 423 . . . 4  |-  ( ph  ->  ( ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y )  ->  U. y  e.  S ) )
2423alrimiv 1617 . . 3  |-  ( ph  ->  A. y ( ( y  C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  S ) )
25 zornn0g 8132 . . 3  |-  ( ( S  e.  dom  card  /\  S  =/=  (/)  /\  A. y ( ( y 
C_  S  /\  y  =/=  (/)  /\ [ C.]  Or  y
)  ->  U. y  e.  S ) )  ->  E. s  e.  S  A. t  e.  S  -.  s  C.  t )
266, 13, 24, 25syl3anc 1182 . 2  |-  ( ph  ->  E. s  e.  S  A. t  e.  S  -.  s  C.  t )
27 simprl 732 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  e.  S )
28 sseq2 3200 . . . . . . . . . . 11  |-  ( z  =  s  ->  ( C  C_  z  <->  C  C_  s
) )
29 difeq1 3287 . . . . . . . . . . . . . . 15  |-  ( z  =  s  ->  (
z  \  { x } )  =  ( s  \  { x } ) )
3029fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( z  =  s  ->  ( N `  ( z  \  { x } ) )  =  ( N `
 ( s  \  { x } ) ) )
3130eleq2d 2350 . . . . . . . . . . . . 13  |-  ( z  =  s  ->  (
x  e.  ( N `
 ( z  \  { x } ) )  <->  x  e.  ( N `  ( s  \  { x } ) ) ) )
3231notbid 285 . . . . . . . . . . . 12  |-  ( z  =  s  ->  ( -.  x  e.  ( N `  ( z  \  { x } ) )  <->  -.  x  e.  ( N `  ( s 
\  { x }
) ) ) )
3332raleqbi1dv 2744 . . . . . . . . . . 11  |-  ( z  =  s  ->  ( A. x  e.  z  -.  x  e.  ( N `  ( z  \  { x } ) )  <->  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) ) )
3428, 33anbi12d 691 . . . . . . . . . 10  |-  ( z  =  s  ->  (
( C  C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z 
\  { x }
) ) )  <->  ( C  C_  s  /\  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) ) ) )
3534, 2elrab2 2925 . . . . . . . . 9  |-  ( s  e.  S  <->  ( s  e.  ~P V  /\  ( C  C_  s  /\  A. x  e.  s  -.  x  e.  ( N `  ( s  \  {
x } ) ) ) ) )
3627, 35sylib 188 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( s  e.  ~P V  /\  ( C  C_  s  /\  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) ) ) )
3736simpld 445 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  e.  ~P V
)
38 elpwi 3633 . . . . . . 7  |-  ( s  e.  ~P V  -> 
s  C_  V )
3937, 38syl 15 . . . . . 6  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  C_  V )
40 lveclmod 15859 . . . . . . . . . 10  |-  ( W  e.  LVec  ->  W  e. 
LMod )
4110, 40syl 15 . . . . . . . . 9  |-  ( ph  ->  W  e.  LMod )
4241adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  W  e.  LMod )
437, 9lspssv 15740 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  s  C_  V )  ->  ( N `  s )  C_  V )
4442, 39, 43syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( N `  s
)  C_  V )
45 ssun1 3338 . . . . . . . . . . . 12  |-  s  C_  ( s  u.  {
w } )
4645a1i 10 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  C_  ( s  u.  {
w } ) )
47 ssun2 3339 . . . . . . . . . . . . . 14  |-  { w }  C_  ( s  u. 
{ w } )
48 vex 2791 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
4948snid 3667 . . . . . . . . . . . . . 14  |-  w  e. 
{ w }
5047, 49sselii 3177 . . . . . . . . . . . . 13  |-  w  e.  ( s  u.  {
w } )
51 eldifn 3299 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( V  \ 
( N `  s
) )  ->  -.  w  e.  ( N `  s ) )
5251adantl 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  w  e.  ( N `  s
) )
537, 9lspssid 15742 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  LMod  /\  s  C_  V )  ->  s  C_  ( N `  s
) )
5442, 39, 53syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  C_  ( N `  s ) )
5554adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  C_  ( N `  s ) )
5655sseld 3179 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( w  e.  s  ->  w  e.  ( N `  s
) ) )
5752, 56mtod 168 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  w  e.  s )
58 nelne1 2535 . . . . . . . . . . . . 13  |-  ( ( w  e.  ( s  u.  { w }
)  /\  -.  w  e.  s )  ->  (
s  u.  { w } )  =/=  s
)
5950, 57, 58sylancr 644 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( s  u.  { w } )  =/=  s )
6059necomd 2529 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  =/=  ( s  u.  {
w } ) )
61 df-pss 3168 . . . . . . . . . . 11  |-  ( s 
C.  ( s  u. 
{ w } )  <-> 
( s  C_  (
s  u.  { w } )  /\  s  =/=  ( s  u.  {
w } ) ) )
6246, 60, 61sylanbrc 645 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  C.  ( s  u.  {
w } ) )
6339adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  s  C_  V )
64 eldifi 3298 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( V  \ 
( N `  s
) )  ->  w  e.  V )
6564adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  w  e.  V )
6665snssd 3760 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  { w }  C_  V )
6763, 66unssd 3351 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( s  u.  { w } ) 
C_  V )
68 fvex 5539 . . . . . . . . . . . . . . 15  |-  ( Base `  W )  e.  _V
697, 68eqeltri 2353 . . . . . . . . . . . . . 14  |-  V  e. 
_V
7069elpw2 4175 . . . . . . . . . . . . 13  |-  ( ( s  u.  { w } )  e.  ~P V 
<->  ( s  u.  {
w } )  C_  V )
7167, 70sylibr 203 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( s  u.  { w } )  e.  ~P V )
7236simprd 449 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( C  C_  s  /\  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) ) )
7372simpld 445 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  C  C_  s )
7473adantr 451 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  C  C_  s
)
7574, 45syl6ss 3191 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  C  C_  (
s  u.  { w } ) )
7610ad2antrr 706 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  W  e.  LVec )
77 difss 3303 . . . . . . . . . . . . . . . . . . . . 21  |-  ( s 
\  { x }
)  C_  s
7839adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  s  C_  V
)
7977, 78syl5ss 3190 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( s  \  { x } ) 
C_  V )
8065adantrr 697 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  w  e.  V
)
81 simprrr 741 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  e.  ( N `  ( ( s  u.  { w } )  \  {
x } ) ) )
82 simprrl 740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  e.  s )
8357adantrr 697 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  -.  w  e.  s )
84 nelne2 2536 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( x  e.  s  /\  -.  w  e.  s
)  ->  x  =/=  w )
8582, 83, 84syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  =/=  w
)
86 elsni 3664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x  e.  { w }  ->  x  =  w )
8786necon3ai 2486 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( x  =/=  w  ->  -.  x  e.  { w } )
8885, 87syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  -.  x  e.  { w } )
89 disjsn 3693 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( { w }  i^i  { x } )  =  (/) 
<->  -.  x  e.  {
w } )
9088, 89sylibr 203 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( { w }  i^i  { x }
)  =  (/) )
91 disj3 3499 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( { w }  i^i  { x } )  =  (/) 
<->  { w }  =  ( { w }  \  { x } ) )
9290, 91sylib 188 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  { w }  =  ( { w }  \  { x }
) )
9392uneq2d 3329 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( ( s 
\  { x }
)  u.  { w } )  =  ( ( s  \  {
x } )  u.  ( { w }  \  { x } ) ) )
94 difundir 3422 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( s  u.  { w } )  \  {
x } )  =  ( ( s  \  { x } )  u.  ( { w }  \  { x }
) )
9593, 94syl6reqr 2334 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( ( s  u.  { w }
)  \  { x } )  =  ( ( s  \  {
x } )  u. 
{ w } ) )
9695fveq2d 5529 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) )  =  ( N `  ( ( s  \  { x } )  u.  {
w } ) ) )
9781, 96eleqtrd 2359 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  e.  ( N `  ( ( s  \  { x } )  u.  {
w } ) ) )
9872simprd 449 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  A. x  e.  s  -.  x  e.  ( N `  ( s  \  { x } ) ) )
9998adantr 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  A. x  e.  s  -.  x  e.  ( N `  ( s 
\  { x }
) ) )
100 rsp 2603 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. x  e.  s  -.  x  e.  ( N `  ( s  \  {
x } ) )  ->  ( x  e.  s  ->  -.  x  e.  ( N `  (
s  \  { x } ) ) ) )
10199, 82, 100sylc 56 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  -.  x  e.  ( N `  ( s 
\  { x }
) ) )
102 eldif 3162 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  e.  ( ( N `
 ( ( s 
\  { x }
)  u.  { w } ) )  \ 
( N `  (
s  \  { x } ) ) )  <-> 
( x  e.  ( N `  ( ( s  \  { x } )  u.  {
w } ) )  /\  -.  x  e.  ( N `  (
s  \  { x } ) ) ) )
10397, 101, 102sylanbrc 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  x  e.  ( ( N `  (
( s  \  {
x } )  u. 
{ w } ) )  \  ( N `
 ( s  \  { x } ) ) ) )
1047, 17, 9lspsolv 15896 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( W  e.  LVec  /\  (
( s  \  {
x } )  C_  V  /\  w  e.  V  /\  x  e.  (
( N `  (
( s  \  {
x } )  u. 
{ w } ) )  \  ( N `
 ( s  \  { x } ) ) ) ) )  ->  w  e.  ( N `  ( ( s  \  { x } )  u.  {
x } ) ) )
10576, 79, 80, 103, 104syl13anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  w  e.  ( N `  ( ( s  \  { x } )  u.  {
x } ) ) )
106 undif1 3529 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( s  \  { x } )  u.  {
x } )  =  ( s  u.  {
x } )
10782snssd 3760 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  { x }  C_  s )
108 ssequn2 3348 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( { x }  C_  s  <->  ( s  u.  { x } )  =  s )
109107, 108sylib 188 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( s  u. 
{ x } )  =  s )
110106, 109syl5eq 2327 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( ( s 
\  { x }
)  u.  { x } )  =  s )
111110fveq2d 5529 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  ( N `  ( ( s  \  { x } )  u.  { x }
) )  =  ( N `  s ) )
112105, 111eleqtrd 2359 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  ( w  e.  ( V  \  ( N `  s )
)  /\  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )  ->  w  e.  ( N `  s ) )
113112expr 598 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( (
x  e.  s  /\  x  e.  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) )  ->  w  e.  ( N `  s ) ) )
11452, 113mtod 168 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  (
x  e.  s  /\  x  e.  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) ) )
115 imnan 411 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  s  ->  -.  x  e.  ( N `  ( (
s  u.  { w } )  \  {
x } ) ) )  <->  -.  ( x  e.  s  /\  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) )
116114, 115sylibr 203 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( x  e.  s  ->  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) )
117116ralrimiv 2625 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  A. x  e.  s  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) )
118 difss 3303 . . . . . . . . . . . . . . . . . . . 20  |-  ( s 
\  { w }
)  C_  s
119118a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( s  \  {
w } )  C_  s )
1207, 9lspss 15741 . . . . . . . . . . . . . . . . . . 19  |-  ( ( W  e.  LMod  /\  s  C_  V  /\  ( s 
\  { w }
)  C_  s )  ->  ( N `  (
s  \  { w } ) )  C_  ( N `  s ) )
12142, 39, 119, 120syl3anc 1182 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( N `  (
s  \  { w } ) )  C_  ( N `  s ) )
122121adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( N `  ( s  \  {
w } ) ) 
C_  ( N `  s ) )
123122sseld 3179 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( w  e.  ( N `  (
s  \  { w } ) )  ->  w  e.  ( N `  s ) ) )
12452, 123mtod 168 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  w  e.  ( N `  (
s  \  { w } ) ) )
125 id 19 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  x  =  w )
126 sneq 3651 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  w  ->  { x }  =  { w } )
127126difeq2d 3294 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  (
( s  u.  {
w } )  \  { x } )  =  ( ( s  u.  { w }
)  \  { w } ) )
128 difun2 3533 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( s  u.  { w } )  \  {
w } )  =  ( s  \  {
w } )
129127, 128syl6eq 2331 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  (
( s  u.  {
w } )  \  { x } )  =  ( s  \  { w } ) )
130129fveq2d 5529 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  ( N `  ( (
s  u.  { w } )  \  {
x } ) )  =  ( N `  ( s  \  {
w } ) ) )
131125, 130eleq12d 2351 . . . . . . . . . . . . . . . . 17  |-  ( x  =  w  ->  (
x  e.  ( N `
 ( ( s  u.  { w }
)  \  { x } ) )  <->  w  e.  ( N `  ( s 
\  { w }
) ) ) )
132131notbid 285 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  ( -.  x  e.  ( N `  ( (
s  u.  { w } )  \  {
x } ) )  <->  -.  w  e.  ( N `  ( s  \  { w } ) ) ) )
13348, 132ralsn 3674 . . . . . . . . . . . . . . 15  |-  ( A. x  e.  { w }  -.  x  e.  ( N `  ( ( s  u.  { w } )  \  {
x } ) )  <->  -.  w  e.  ( N `  ( s  \  { w } ) ) )
134124, 133sylibr 203 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  A. x  e.  { w }  -.  x  e.  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) )
135 ralun 3357 . . . . . . . . . . . . . 14  |-  ( ( A. x  e.  s  -.  x  e.  ( N `  ( ( s  u.  { w } )  \  {
x } ) )  /\  A. x  e. 
{ w }  -.  x  e.  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) )  ->  A. x  e.  (
s  u.  { w } )  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) )
136117, 134, 135syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  A. x  e.  ( s  u.  {
w } )  -.  x  e.  ( N `
 ( ( s  u.  { w }
)  \  { x } ) ) )
13775, 136jca 518 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( C  C_  ( s  u.  {
w } )  /\  A. x  e.  ( s  u.  { w }
)  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) )
138 sseq2 3200 . . . . . . . . . . . . . 14  |-  ( z  =  ( s  u. 
{ w } )  ->  ( C  C_  z 
<->  C  C_  ( s  u.  { w } ) ) )
139 difeq1 3287 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( s  u. 
{ w } )  ->  ( z  \  { x } )  =  ( ( s  u.  { w }
)  \  { x } ) )
140139fveq2d 5529 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( s  u. 
{ w } )  ->  ( N `  ( z  \  {
x } ) )  =  ( N `  ( ( s  u. 
{ w } ) 
\  { x }
) ) )
141140eleq2d 2350 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( s  u. 
{ w } )  ->  ( x  e.  ( N `  (
z  \  { x } ) )  <->  x  e.  ( N `  ( ( s  u.  { w } )  \  {
x } ) ) ) )
142141notbid 285 . . . . . . . . . . . . . . 15  |-  ( z  =  ( s  u. 
{ w } )  ->  ( -.  x  e.  ( N `  (
z  \  { x } ) )  <->  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) )
143142raleqbi1dv 2744 . . . . . . . . . . . . . 14  |-  ( z  =  ( s  u. 
{ w } )  ->  ( A. x  e.  z  -.  x  e.  ( N `  (
z  \  { x } ) )  <->  A. x  e.  ( s  u.  {
w } )  -.  x  e.  ( N `
 ( ( s  u.  { w }
)  \  { x } ) ) ) )
144138, 143anbi12d 691 . . . . . . . . . . . . 13  |-  ( z  =  ( s  u. 
{ w } )  ->  ( ( C 
C_  z  /\  A. x  e.  z  -.  x  e.  ( N `  ( z  \  {
x } ) ) )  <->  ( C  C_  ( s  u.  {
w } )  /\  A. x  e.  ( s  u.  { w }
)  -.  x  e.  ( N `  (
( s  u.  {
w } )  \  { x } ) ) ) ) )
145144, 2elrab2 2925 . . . . . . . . . . . 12  |-  ( ( s  u.  { w } )  e.  S  <->  ( ( s  u.  {
w } )  e. 
~P V  /\  ( C  C_  ( s  u. 
{ w } )  /\  A. x  e.  ( s  u.  {
w } )  -.  x  e.  ( N `
 ( ( s  u.  { w }
)  \  { x } ) ) ) ) )
14671, 137, 145sylanbrc 645 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  ( s  u.  { w } )  e.  S )
147 simplrr 737 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  A. t  e.  S  -.  s  C.  t )
148 psseq2 3264 . . . . . . . . . . . . 13  |-  ( t  =  ( s  u. 
{ w } )  ->  ( s  C.  t 
<->  s  C.  ( s  u.  { w }
) ) )
149148notbid 285 . . . . . . . . . . . 12  |-  ( t  =  ( s  u. 
{ w } )  ->  ( -.  s  C.  t  <->  -.  s  C.  ( s  u.  {
w } ) ) )
150149rspcv 2880 . . . . . . . . . . 11  |-  ( ( s  u.  { w } )  e.  S  ->  ( A. t  e.  S  -.  s  C.  t  ->  -.  s  C.  ( s  u.  {
w } ) ) )
151146, 147, 150sylc 56 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  /\  w  e.  ( V  \  ( N `
 s ) ) )  ->  -.  s  C.  ( s  u.  {
w } ) )
15262, 151pm2.65da 559 . . . . . . . . 9  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  -.  w  e.  ( V  \  ( N `  s ) ) )
153152eq0rdv 3489 . . . . . . . 8  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( V  \  ( N `  s )
)  =  (/) )
154 ssdif0 3513 . . . . . . . 8  |-  ( V 
C_  ( N `  s )  <->  ( V  \  ( N `  s
) )  =  (/) )
155153, 154sylibr 203 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  V  C_  ( N `  s ) )
15644, 155eqssd 3196 . . . . . 6  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( N `  s
)  =  V )
15710adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  ->  W  e.  LVec )
1587, 8, 9islbs2 15907 . . . . . . 7  |-  ( W  e.  LVec  ->  ( s  e.  J  <->  ( s  C_  V  /\  ( N `
 s )  =  V  /\  A. x  e.  s  -.  x  e.  ( N `  (
s  \  { x } ) ) ) ) )
159157, 158syl 15 . . . . . 6  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( s  e.  J  <->  ( s  C_  V  /\  ( N `  s )  =  V  /\  A. x  e.  s  -.  x  e.  ( N `  ( s  \  {
x } ) ) ) ) )
16039, 156, 98, 159mpbir3and 1135 . . . . 5  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
s  e.  J )
161160, 73jca 518 . . . 4  |-  ( (
ph  /\  ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t ) )  -> 
( s  e.  J  /\  C  C_  s ) )
162161ex 423 . . 3  |-  ( ph  ->  ( ( s  e.  S  /\  A. t  e.  S  -.  s  C.  t )  ->  (
s  e.  J  /\  C  C_  s ) ) )
163162reximdv2 2652 . 2  |-  ( ph  ->  ( E. s  e.  S  A. t  e.  S  -.  s  C.  t  ->  E. s  e.  J  C  C_  s ) )
16426, 163mpd 14 1  |-  ( ph  ->  E. s  e.  J  C  C_  s )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   A.wal 1527    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547   _Vcvv 2788    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152    C. wpss 3153   (/)c0 3455   ~Pcpw 3625   {csn 3640   U.cuni 3827   U_ciun 3905    Or wor 4313   dom cdm 4689   ` cfv 5255   [ C.] crpss 6276   cardccrd 7568   Basecbs 13148   LModclmod 15627   LSubSpclss 15689   LSpanclspn 15728  LBasisclbs 15827   LVecclvec 15855
This theorem is referenced by:  lbsextg  15915
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-tpos 6234  df-rpss 6277  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-oppr 15405  df-dvdsr 15423  df-unit 15424  df-invr 15454  df-drng 15514  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lbs 15828  df-lvec 15856
  Copyright terms: Public domain W3C validator