MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbspss Unicode version

Theorem lbspss 15835
Description: No proper subset of a basis spans the space. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsind2.j  |-  J  =  (LBasis `  W )
lbsind2.n  |-  N  =  ( LSpan `  W )
lbsind2.f  |-  F  =  (Scalar `  W )
lbsind2.o  |-  .1.  =  ( 1r `  F )
lbsind2.z  |-  .0.  =  ( 0g `  F )
lbspss.v  |-  V  =  ( Base `  W
)
Assertion
Ref Expression
lbspss  |-  ( ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  ->  ( N `  C )  =/=  V
)

Proof of Theorem lbspss
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssnel 3519 . . 3  |-  ( C 
C.  B  ->  E. x
( x  e.  B  /\  -.  x  e.  C
) )
213ad2ant3 978 . 2  |-  ( ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  ->  E. x ( x  e.  B  /\  -.  x  e.  C )
)
3 simpl2 959 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  B  e.  J )
4 lbspss.v . . . . . . . . 9  |-  V  =  ( Base `  W
)
5 lbsind2.j . . . . . . . . 9  |-  J  =  (LBasis `  W )
64, 5lbsss 15830 . . . . . . . 8  |-  ( B  e.  J  ->  B  C_  V )
73, 6syl 15 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  B  C_  V )
8 simprl 732 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  x  e.  B )
97, 8sseldd 3181 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  x  e.  V )
10 simpl1l 1006 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  W  e.  LMod )
11 simpl1r 1007 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  .1.  =/=  .0.  )
12 lbsind2.n . . . . . . . . 9  |-  N  =  ( LSpan `  W )
13 lbsind2.f . . . . . . . . 9  |-  F  =  (Scalar `  W )
14 lbsind2.o . . . . . . . . 9  |-  .1.  =  ( 1r `  F )
15 lbsind2.z . . . . . . . . 9  |-  .0.  =  ( 0g `  F )
165, 12, 13, 14, 15lbsind2 15834 . . . . . . . 8  |-  ( ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  x  e.  B
)  ->  -.  x  e.  ( N `  ( B  \  { x }
) ) )
1710, 11, 3, 8, 16syl211anc 1188 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  -.  x  e.  ( N `  ( B  \  { x } ) ) )
18 difss 3303 . . . . . . . . . 10  |-  ( B 
\  { x }
)  C_  B
1918, 7syl5ss 3190 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( B  \  {
x } )  C_  V )
20 simpl3 960 . . . . . . . . . . . . . 14  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  C  C.  B )
2120pssssd 3273 . . . . . . . . . . . . 13  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  C  C_  B )
2221sseld 3179 . . . . . . . . . . . 12  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( y  e.  C  ->  y  e.  B ) )
23 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  -.  x  e.  C
)
24 eleq1 2343 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
y  e.  C  <->  x  e.  C ) )
2524notbid 285 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  ( -.  y  e.  C  <->  -.  x  e.  C ) )
2623, 25syl5ibrcom 213 . . . . . . . . . . . . 13  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( y  =  x  ->  -.  y  e.  C ) )
2726necon2ad 2494 . . . . . . . . . . . 12  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( y  e.  C  ->  y  =/=  x ) )
2822, 27jcad 519 . . . . . . . . . . 11  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( y  e.  C  ->  ( y  e.  B  /\  y  =/=  x
) ) )
29 eldifsn 3749 . . . . . . . . . . 11  |-  ( y  e.  ( B  \  { x } )  <-> 
( y  e.  B  /\  y  =/=  x
) )
3028, 29syl6ibr 218 . . . . . . . . . 10  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( y  e.  C  ->  y  e.  ( B 
\  { x }
) ) )
3130ssrdv 3185 . . . . . . . . 9  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  C  C_  ( B  \  { x } ) )
324, 12lspss 15741 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  ( B  \  { x }
)  C_  V  /\  C  C_  ( B  \  { x } ) )  ->  ( N `  C )  C_  ( N `  ( B  \  { x } ) ) )
3310, 19, 31, 32syl3anc 1182 . . . . . . . 8  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( N `  C
)  C_  ( N `  ( B  \  {
x } ) ) )
3433sseld 3179 . . . . . . 7  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( x  e.  ( N `  C )  ->  x  e.  ( N `  ( B 
\  { x }
) ) ) )
3517, 34mtod 168 . . . . . 6  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  -.  x  e.  ( N `  C )
)
36 nelne1 2535 . . . . . 6  |-  ( ( x  e.  V  /\  -.  x  e.  ( N `  C )
)  ->  V  =/=  ( N `  C ) )
379, 35, 36syl2anc 642 . . . . 5  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  ->  V  =/=  ( N `  C ) )
3837necomd 2529 . . . 4  |-  ( ( ( ( W  e. 
LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  /\  ( x  e.  B  /\  -.  x  e.  C ) )  -> 
( N `  C
)  =/=  V )
3938ex 423 . . 3  |-  ( ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  ->  ( ( x  e.  B  /\  -.  x  e.  C )  ->  ( N `  C
)  =/=  V ) )
4039exlimdv 1664 . 2  |-  ( ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  ->  ( E. x
( x  e.  B  /\  -.  x  e.  C
)  ->  ( N `  C )  =/=  V
) )
412, 40mpd 14 1  |-  ( ( ( W  e.  LMod  /\  .1.  =/=  .0.  )  /\  B  e.  J  /\  C  C.  B )  ->  ( N `  C )  =/=  V
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446    \ cdif 3149    C_ wss 3152    C. wpss 3153   {csn 3640   ` cfv 5255   Basecbs 13148  Scalarcsca 13211   0gc0g 13400   1rcur 15339   LModclmod 15627   LSpanclspn 15728  LBasisclbs 15827
This theorem is referenced by:  islbs3  15908
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-0g 13404  df-mnd 14367  df-grp 14489  df-mgp 15326  df-rng 15340  df-ur 15342  df-lmod 15629  df-lss 15690  df-lsp 15729  df-lbs 15828
  Copyright terms: Public domain W3C validator