Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdval Structured version   Unicode version

Theorem lcdval 32314
Description: Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
Hypotheses
Ref Expression
lcdval.h  |-  H  =  ( LHyp `  K
)
lcdval.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcdval.c  |-  C  =  ( (LCDual `  K
) `  W )
lcdval.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcdval.f  |-  F  =  (LFnl `  U )
lcdval.l  |-  L  =  (LKer `  U )
lcdval.d  |-  D  =  (LDual `  U )
lcdval.k  |-  ( ph  ->  ( K  e.  X  /\  W  e.  H
) )
Assertion
Ref Expression
lcdval  |-  ( ph  ->  C  =  ( Ds  { f  e.  F  | 
(  ._|_  `  (  ._|_  `  ( L `  f
) ) )  =  ( L `  f
) } ) )
Distinct variable groups:    f, K    f, F    f, W
Allowed substitution hints:    ph( f)    C( f)    D( f)    U( f)    H( f)    L( f)    ._|_ ( f)    X( f)

Proof of Theorem lcdval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 lcdval.k . 2  |-  ( ph  ->  ( K  e.  X  /\  W  e.  H
) )
2 lcdval.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
3 lcdval.h . . . . . 6  |-  H  =  ( LHyp `  K
)
43lcdfval 32313 . . . . 5  |-  ( K  e.  X  ->  (LCDual `  K )  =  ( w  e.  H  |->  ( (LDual `  ( ( DVecH `  K ) `  w ) )s  { f  e.  (LFnl `  (
( DVecH `  K ) `  w ) )  |  ( ( ( ocH `  K ) `  w
) `  ( (
( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f ) } ) ) )
54fveq1d 5722 . . . 4  |-  ( K  e.  X  ->  (
(LCDual `  K ) `  W )  =  ( ( w  e.  H  |->  ( (LDual `  (
( DVecH `  K ) `  w ) )s  { f  e.  (LFnl `  (
( DVecH `  K ) `  w ) )  |  ( ( ( ocH `  K ) `  w
) `  ( (
( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f ) } ) ) `  W ) )
62, 5syl5eq 2479 . . 3  |-  ( K  e.  X  ->  C  =  ( ( w  e.  H  |->  ( (LDual `  ( ( DVecH `  K
) `  w )
)s 
{ f  e.  (LFnl `  ( ( DVecH `  K
) `  w )
)  |  ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f ) } ) ) `  W ) )
7 fveq2 5720 . . . . . . . 8  |-  ( w  =  W  ->  (
( DVecH `  K ) `  w )  =  ( ( DVecH `  K ) `  W ) )
8 lcdval.u . . . . . . . 8  |-  U  =  ( ( DVecH `  K
) `  W )
97, 8syl6eqr 2485 . . . . . . 7  |-  ( w  =  W  ->  (
( DVecH `  K ) `  w )  =  U )
109fveq2d 5724 . . . . . 6  |-  ( w  =  W  ->  (LDual `  ( ( DVecH `  K
) `  w )
)  =  (LDual `  U ) )
11 lcdval.d . . . . . 6  |-  D  =  (LDual `  U )
1210, 11syl6eqr 2485 . . . . 5  |-  ( w  =  W  ->  (LDual `  ( ( DVecH `  K
) `  w )
)  =  D )
139fveq2d 5724 . . . . . . 7  |-  ( w  =  W  ->  (LFnl `  ( ( DVecH `  K
) `  w )
)  =  (LFnl `  U ) )
14 lcdval.f . . . . . . 7  |-  F  =  (LFnl `  U )
1513, 14syl6eqr 2485 . . . . . 6  |-  ( w  =  W  ->  (LFnl `  ( ( DVecH `  K
) `  w )
)  =  F )
16 fveq2 5720 . . . . . . . . 9  |-  ( w  =  W  ->  (
( ocH `  K
) `  w )  =  ( ( ocH `  K ) `  W
) )
17 lcdval.o . . . . . . . . 9  |-  ._|_  =  ( ( ocH `  K
) `  W )
1816, 17syl6eqr 2485 . . . . . . . 8  |-  ( w  =  W  ->  (
( ocH `  K
) `  w )  =  ._|_  )
199fveq2d 5724 . . . . . . . . . . 11  |-  ( w  =  W  ->  (LKer `  ( ( DVecH `  K
) `  w )
)  =  (LKer `  U ) )
20 lcdval.l . . . . . . . . . . 11  |-  L  =  (LKer `  U )
2119, 20syl6eqr 2485 . . . . . . . . . 10  |-  ( w  =  W  ->  (LKer `  ( ( DVecH `  K
) `  w )
)  =  L )
2221fveq1d 5722 . . . . . . . . 9  |-  ( w  =  W  ->  (
(LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  =  ( L `  f ) )
2318, 22fveq12d 5726 . . . . . . . 8  |-  ( w  =  W  ->  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  =  (  ._|_  `  ( L `
 f ) ) )
2418, 23fveq12d 5726 . . . . . . 7  |-  ( w  =  W  ->  (
( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( 
._|_  `  (  ._|_  `  ( L `  f )
) ) )
2524, 22eqeq12d 2449 . . . . . 6  |-  ( w  =  W  ->  (
( ( ( ocH `  K ) `  w
) `  ( (
( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )  <->  ( 
._|_  `  (  ._|_  `  ( L `  f )
) )  =  ( L `  f ) ) )
2615, 25rabeqbidv 2943 . . . . 5  |-  ( w  =  W  ->  { f  e.  (LFnl `  (
( DVecH `  K ) `  w ) )  |  ( ( ( ocH `  K ) `  w
) `  ( (
( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f ) }  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f )
) )  =  ( L `  f ) } )
2712, 26oveq12d 6091 . . . 4  |-  ( w  =  W  ->  (
(LDual `  ( ( DVecH `  K ) `  w ) )s  { f  e.  (LFnl `  (
( DVecH `  K ) `  w ) )  |  ( ( ( ocH `  K ) `  w
) `  ( (
( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f ) } )  =  ( Ds  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) } ) )
28 eqid 2435 . . . 4  |-  ( w  e.  H  |->  ( (LDual `  ( ( DVecH `  K
) `  w )
)s 
{ f  e.  (LFnl `  ( ( DVecH `  K
) `  w )
)  |  ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f ) } ) )  =  ( w  e.  H  |->  ( (LDual `  ( ( DVecH `  K
) `  w )
)s 
{ f  e.  (LFnl `  ( ( DVecH `  K
) `  w )
)  |  ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f ) } ) )
29 ovex 6098 . . . 4  |-  ( Ds  { f  e.  F  | 
(  ._|_  `  (  ._|_  `  ( L `  f
) ) )  =  ( L `  f
) } )  e. 
_V
3027, 28, 29fvmpt 5798 . . 3  |-  ( W  e.  H  ->  (
( w  e.  H  |->  ( (LDual `  (
( DVecH `  K ) `  w ) )s  { f  e.  (LFnl `  (
( DVecH `  K ) `  w ) )  |  ( ( ( ocH `  K ) `  w
) `  ( (
( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f ) } ) ) `  W )  =  ( Ds  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) } ) )
316, 30sylan9eq 2487 . 2  |-  ( ( K  e.  X  /\  W  e.  H )  ->  C  =  ( Ds  { f  e.  F  | 
(  ._|_  `  (  ._|_  `  ( L `  f
) ) )  =  ( L `  f
) } ) )
321, 31syl 16 1  |-  ( ph  ->  C  =  ( Ds  { f  e.  F  | 
(  ._|_  `  (  ._|_  `  ( L `  f
) ) )  =  ( L `  f
) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2701    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   ↾s cress 13462  LFnlclfn 29782  LKerclk 29810  LDualcld 29848   LHypclh 30708   DVecHcdvh 31803   ocHcoch 32072  LCDualclcd 32311
This theorem is referenced by:  lcdval2  32315  lcdlvec  32316  lcdvadd  32322  lcdsca  32324  lcdvs  32328  lcd0v  32336  lcdlsp  32346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-lcdual 32312
  Copyright terms: Public domain W3C validator