Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcdvsubval Structured version   Unicode version

Theorem lcdvsubval 32354
Description: The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 11-Jun-2015.)
Hypotheses
Ref Expression
lcdvsubval.h  |-  H  =  ( LHyp `  K
)
lcdvsubval.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcdvsubval.v  |-  V  =  ( Base `  U
)
lcdvsubval.r  |-  R  =  (Scalar `  U )
lcdvsubval.s  |-  S  =  ( -g `  R
)
lcdvsubval.c  |-  C  =  ( (LCDual `  K
) `  W )
lcdvsubval.d  |-  D  =  ( Base `  C
)
lcdvsubval.m  |-  .-  =  ( -g `  C )
lcdvsubval.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcdvsubval.f  |-  ( ph  ->  F  e.  D )
lcdvsubval.g  |-  ( ph  ->  G  e.  D )
lcdvsubval.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
lcdvsubval  |-  ( ph  ->  ( ( F  .-  G ) `  X
)  =  ( ( F `  X ) S ( G `  X ) ) )

Proof of Theorem lcdvsubval
StepHypRef Expression
1 lcdvsubval.h . . . . 5  |-  H  =  ( LHyp `  K
)
2 lcdvsubval.c . . . . 5  |-  C  =  ( (LCDual `  K
) `  W )
3 lcdvsubval.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
41, 2, 3lcdlmod 32328 . . . 4  |-  ( ph  ->  C  e.  LMod )
5 lcdvsubval.f . . . 4  |-  ( ph  ->  F  e.  D )
6 lcdvsubval.g . . . 4  |-  ( ph  ->  G  e.  D )
7 lcdvsubval.d . . . . 5  |-  D  =  ( Base `  C
)
8 eqid 2436 . . . . 5  |-  ( +g  `  C )  =  ( +g  `  C )
9 lcdvsubval.m . . . . 5  |-  .-  =  ( -g `  C )
10 eqid 2436 . . . . 5  |-  (Scalar `  C )  =  (Scalar `  C )
11 eqid 2436 . . . . 5  |-  ( .s
`  C )  =  ( .s `  C
)
12 eqid 2436 . . . . 5  |-  ( inv g `  (Scalar `  C ) )  =  ( inv g `  (Scalar `  C ) )
13 eqid 2436 . . . . 5  |-  ( 1r
`  (Scalar `  C )
)  =  ( 1r
`  (Scalar `  C )
)
147, 8, 9, 10, 11, 12, 13lmodvsubval2 15992 . . . 4  |-  ( ( C  e.  LMod  /\  F  e.  D  /\  G  e.  D )  ->  ( F  .-  G )  =  ( F ( +g  `  C ) ( ( ( inv g `  (Scalar `  C ) ) `
 ( 1r `  (Scalar `  C ) ) ) ( .s `  C ) G ) ) )
154, 5, 6, 14syl3anc 1184 . . 3  |-  ( ph  ->  ( F  .-  G
)  =  ( F ( +g  `  C
) ( ( ( inv g `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) ) )
1615fveq1d 5723 . 2  |-  ( ph  ->  ( ( F  .-  G ) `  X
)  =  ( ( F ( +g  `  C
) ( ( ( inv g `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) ) `
 X ) )
17 lcdvsubval.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
18 lcdvsubval.v . . 3  |-  V  =  ( Base `  U
)
19 lcdvsubval.r . . 3  |-  R  =  (Scalar `  U )
20 eqid 2436 . . 3  |-  ( +g  `  R )  =  ( +g  `  R )
21 eqid 2436 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
2210lmodfgrp 15952 . . . . . . 7  |-  ( C  e.  LMod  ->  (Scalar `  C )  e.  Grp )
234, 22syl 16 . . . . . 6  |-  ( ph  ->  (Scalar `  C )  e.  Grp )
2410lmodrng 15951 . . . . . . . 8  |-  ( C  e.  LMod  ->  (Scalar `  C )  e.  Ring )
254, 24syl 16 . . . . . . 7  |-  ( ph  ->  (Scalar `  C )  e.  Ring )
26 eqid 2436 . . . . . . . 8  |-  ( Base `  (Scalar `  C )
)  =  ( Base `  (Scalar `  C )
)
2726, 13rngidcl 15677 . . . . . . 7  |-  ( (Scalar `  C )  e.  Ring  -> 
( 1r `  (Scalar `  C ) )  e.  ( Base `  (Scalar `  C ) ) )
2825, 27syl 16 . . . . . 6  |-  ( ph  ->  ( 1r `  (Scalar `  C ) )  e.  ( Base `  (Scalar `  C ) ) )
2926, 12grpinvcl 14843 . . . . . 6  |-  ( ( (Scalar `  C )  e.  Grp  /\  ( 1r
`  (Scalar `  C )
)  e.  ( Base `  (Scalar `  C )
) )  ->  (
( inv g `  (Scalar `  C ) ) `
 ( 1r `  (Scalar `  C ) ) )  e.  ( Base `  (Scalar `  C )
) )
3023, 28, 29syl2anc 643 . . . . 5  |-  ( ph  ->  ( ( inv g `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) )  e.  (
Base `  (Scalar `  C
) ) )
311, 17, 19, 21, 2, 10, 26, 3lcdsbase 32336 . . . . 5  |-  ( ph  ->  ( Base `  (Scalar `  C ) )  =  ( Base `  R
) )
3230, 31eleqtrd 2512 . . . 4  |-  ( ph  ->  ( ( inv g `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) )  e.  (
Base `  R )
)
331, 17, 19, 21, 2, 7, 11, 3, 32, 6lcdvscl 32341 . . 3  |-  ( ph  ->  ( ( ( inv g `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G )  e.  D )
34 lcdvsubval.x . . 3  |-  ( ph  ->  X  e.  V )
351, 17, 18, 19, 20, 2, 7, 8, 3, 5, 33, 34lcdvaddval 32334 . 2  |-  ( ph  ->  ( ( F ( +g  `  C ) ( ( ( inv g `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) ) `
 X )  =  ( ( F `  X ) ( +g  `  R ) ( ( ( ( inv g `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) ) ( .s
`  C ) G ) `  X ) ) )
36 eqid 2436 . . . . . . . . 9  |-  ( inv g `  R )  =  ( inv g `  R )
371, 17, 19, 36, 2, 10, 12, 3lcdneg 32346 . . . . . . . 8  |-  ( ph  ->  ( inv g `  (Scalar `  C ) )  =  ( inv g `  R ) )
38 eqid 2436 . . . . . . . . 9  |-  ( 1r
`  R )  =  ( 1r `  R
)
391, 17, 19, 38, 2, 10, 13, 3lcd1 32345 . . . . . . . 8  |-  ( ph  ->  ( 1r `  (Scalar `  C ) )  =  ( 1r `  R
) )
4037, 39fveq12d 5727 . . . . . . 7  |-  ( ph  ->  ( ( inv g `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) )  =  ( ( inv g `  R ) `  ( 1r `  R ) ) )
4140oveq1d 6089 . . . . . 6  |-  ( ph  ->  ( ( ( inv g `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G )  =  ( ( ( inv g `  R ) `
 ( 1r `  R ) ) ( .s `  C ) G ) )
4241fveq1d 5723 . . . . 5  |-  ( ph  ->  ( ( ( ( inv g `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) `  X )  =  ( ( ( ( inv g `  R ) `
 ( 1r `  R ) ) ( .s `  C ) G ) `  X
) )
43 eqid 2436 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
441, 17, 3dvhlmod 31846 . . . . . . . . 9  |-  ( ph  ->  U  e.  LMod )
4519lmodrng 15951 . . . . . . . . 9  |-  ( U  e.  LMod  ->  R  e. 
Ring )
4644, 45syl 16 . . . . . . . 8  |-  ( ph  ->  R  e.  Ring )
47 rnggrp 15662 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Grp )
4846, 47syl 16 . . . . . . 7  |-  ( ph  ->  R  e.  Grp )
4919, 21, 38lmod1cl 15970 . . . . . . . 8  |-  ( U  e.  LMod  ->  ( 1r
`  R )  e.  ( Base `  R
) )
5044, 49syl 16 . . . . . . 7  |-  ( ph  ->  ( 1r `  R
)  e.  ( Base `  R ) )
5121, 36grpinvcl 14843 . . . . . . 7  |-  ( ( R  e.  Grp  /\  ( 1r `  R )  e.  ( Base `  R
) )  ->  (
( inv g `  R ) `  ( 1r `  R ) )  e.  ( Base `  R
) )
5248, 50, 51syl2anc 643 . . . . . 6  |-  ( ph  ->  ( ( inv g `  R ) `  ( 1r `  R ) )  e.  ( Base `  R
) )
531, 17, 18, 19, 21, 43, 2, 7, 11, 3, 52, 6, 34lcdvsval 32340 . . . . 5  |-  ( ph  ->  ( ( ( ( inv g `  R
) `  ( 1r `  R ) ) ( .s `  C ) G ) `  X
)  =  ( ( G `  X ) ( .r `  R
) ( ( inv g `  R ) `
 ( 1r `  R ) ) ) )
541, 17, 18, 19, 21, 2, 7, 3, 6, 34lcdvbasecl 32332 . . . . . 6  |-  ( ph  ->  ( G `  X
)  e.  ( Base `  R ) )
5521, 43, 38, 36, 46, 54rngnegr 15697 . . . . 5  |-  ( ph  ->  ( ( G `  X ) ( .r
`  R ) ( ( inv g `  R ) `  ( 1r `  R ) ) )  =  ( ( inv g `  R
) `  ( G `  X ) ) )
5642, 53, 553eqtrd 2472 . . . 4  |-  ( ph  ->  ( ( ( ( inv g `  (Scalar `  C ) ) `  ( 1r `  (Scalar `  C ) ) ) ( .s `  C
) G ) `  X )  =  ( ( inv g `  R ) `  ( G `  X )
) )
5756oveq2d 6090 . . 3  |-  ( ph  ->  ( ( F `  X ) ( +g  `  R ) ( ( ( ( inv g `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) ) ( .s
`  C ) G ) `  X ) )  =  ( ( F `  X ) ( +g  `  R
) ( ( inv g `  R ) `
 ( G `  X ) ) ) )
581, 17, 18, 19, 21, 2, 7, 3, 5, 34lcdvbasecl 32332 . . . 4  |-  ( ph  ->  ( F `  X
)  e.  ( Base `  R ) )
59 lcdvsubval.s . . . . 5  |-  S  =  ( -g `  R
)
6021, 20, 36, 59grpsubval 14841 . . . 4  |-  ( ( ( F `  X
)  e.  ( Base `  R )  /\  ( G `  X )  e.  ( Base `  R
) )  ->  (
( F `  X
) S ( G `
 X ) )  =  ( ( F `
 X ) ( +g  `  R ) ( ( inv g `  R ) `  ( G `  X )
) ) )
6158, 54, 60syl2anc 643 . . 3  |-  ( ph  ->  ( ( F `  X ) S ( G `  X ) )  =  ( ( F `  X ) ( +g  `  R
) ( ( inv g `  R ) `
 ( G `  X ) ) ) )
6257, 61eqtr4d 2471 . 2  |-  ( ph  ->  ( ( F `  X ) ( +g  `  R ) ( ( ( ( inv g `  (Scalar `  C )
) `  ( 1r `  (Scalar `  C )
) ) ( .s
`  C ) G ) `  X ) )  =  ( ( F `  X ) S ( G `  X ) ) )
6316, 35, 623eqtrd 2472 1  |-  ( ph  ->  ( ( F  .-  G ) `  X
)  =  ( ( F `  X ) S ( G `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   ` cfv 5447  (class class class)co 6074   Basecbs 13462   +g cplusg 13522   .rcmulr 13523  Scalarcsca 13525   .scvsca 13526   Grpcgrp 14678   inv gcminusg 14679   -gcsg 14681   Ringcrg 15653   1rcur 15655   LModclmod 15943   HLchlt 30086   LHypclh 30719   DVecHcdvh 31814  LCDualclcd 32322
This theorem is referenced by:  hdmapinvlem3  32659
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-fal 1329  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-iin 4089  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-of 6298  df-1st 6342  df-2nd 6343  df-tpos 6472  df-undef 6536  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-oadd 6721  df-er 6898  df-map 7013  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-n0 10215  df-z 10276  df-uz 10482  df-fz 11037  df-struct 13464  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-mulr 13536  df-sca 13538  df-vsca 13539  df-0g 13720  df-mre 13804  df-mrc 13805  df-acs 13807  df-poset 14396  df-plt 14408  df-lub 14424  df-glb 14425  df-join 14426  df-meet 14427  df-p0 14461  df-p1 14462  df-lat 14468  df-clat 14530  df-mnd 14683  df-submnd 14732  df-grp 14805  df-minusg 14806  df-sbg 14807  df-subg 14934  df-cntz 15109  df-oppg 15135  df-lsm 15263  df-cmn 15407  df-abl 15408  df-mgp 15642  df-rng 15656  df-ur 15658  df-oppr 15721  df-dvdsr 15739  df-unit 15740  df-invr 15770  df-dvr 15781  df-drng 15830  df-lmod 15945  df-lss 16002  df-lsp 16041  df-lvec 16168  df-lsatoms 29712  df-lshyp 29713  df-lcv 29755  df-lfl 29794  df-lkr 29822  df-ldual 29860  df-oposet 29912  df-ol 29914  df-oml 29915  df-covers 30002  df-ats 30003  df-atl 30034  df-cvlat 30058  df-hlat 30087  df-llines 30233  df-lplanes 30234  df-lvols 30235  df-lines 30236  df-psubsp 30238  df-pmap 30239  df-padd 30531  df-lhyp 30723  df-laut 30724  df-ldil 30839  df-ltrn 30840  df-trl 30894  df-tgrp 31478  df-tendo 31490  df-edring 31492  df-dveca 31738  df-disoa 31765  df-dvech 31815  df-dib 31875  df-dic 31909  df-dih 31965  df-doch 32084  df-djh 32131  df-lcdual 32323
  Copyright terms: Public domain W3C validator