Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl1lem Unicode version

Theorem lcfl1lem 31681
Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014.)
Hypothesis
Ref Expression
lcfl1.c  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
Assertion
Ref Expression
lcfl1lem  |-  ( G  e.  C  <->  ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G )
) )  =  ( L `  G ) ) )
Distinct variable groups:    f, F    f, G    f, L    ._|_ , f
Allowed substitution hint:    C( f)

Proof of Theorem lcfl1lem
StepHypRef Expression
1 fveq2 5525 . . . . 5  |-  ( f  =  G  ->  ( L `  f )  =  ( L `  G ) )
21fveq2d 5529 . . . 4  |-  ( f  =  G  ->  (  ._|_  `  ( L `  f ) )  =  (  ._|_  `  ( L `
 G ) ) )
32fveq2d 5529 . . 3  |-  ( f  =  G  ->  (  ._|_  `  (  ._|_  `  ( L `  f )
) )  =  ( 
._|_  `  (  ._|_  `  ( L `  G )
) ) )
43, 1eqeq12d 2297 . 2  |-  ( f  =  G  ->  (
(  ._|_  `  (  ._|_  `  ( L `  f
) ) )  =  ( L `  f
)  <->  (  ._|_  `  (  ._|_  `  ( L `  G ) ) )  =  ( L `  G ) ) )
5 lcfl1.c . 2  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
64, 5elrab2 2925 1  |-  ( G  e.  C  <->  ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G )
) )  =  ( L `  G ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547   ` cfv 5255
This theorem is referenced by:  lcfl1  31682  lcfl8b  31694  lclkrlem1  31696  lclkrlem2  31722  lclkr  31723  lcfls1c  31726  lcfrlem9  31740  mapdvalc  31819  mapdval2N  31820  mapdval4N  31822  mapdordlem1a  31824  mapdordlem1bN  31825  mapdrvallem2  31835
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263
  Copyright terms: Public domain W3C validator