Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl1lem Structured version   Unicode version

Theorem lcfl1lem 32351
 Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Dec-2014.)
Hypothesis
Ref Expression
lcfl1.c
Assertion
Ref Expression
lcfl1lem
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem lcfl1lem
StepHypRef Expression
1 fveq2 5730 . . . . 5
21fveq2d 5734 . . . 4
32fveq2d 5734 . . 3
43, 1eqeq12d 2452 . 2
5 lcfl1.c . 2
64, 5elrab2 3096 1
 Colors of variables: wff set class Syntax hints:   wb 178   wa 360   wceq 1653   wcel 1726  crab 2711  cfv 5456 This theorem is referenced by:  lcfl1  32352  lcfl8b  32364  lclkrlem1  32366  lclkrlem2  32392  lclkr  32393  lcfls1c  32396  lcfrlem9  32410  mapdvalc  32489  mapdval2N  32490  mapdval4N  32492  mapdordlem1a  32494  mapdordlem1bN  32495  mapdrvallem2  32505 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-iota 5420  df-fv 5464
 Copyright terms: Public domain W3C validator