Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl6 Unicode version

Theorem lcfl6 31987
Description: Property of a functional with a closed kernel. Note that  ( L `  G )  =  V means the functional is zero by lkr0f 29581. (Contributed by NM, 3-Jan-2015.)
Hypotheses
Ref Expression
lcfl6.h  |-  H  =  ( LHyp `  K
)
lcfl6.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcfl6.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcfl6.v  |-  V  =  ( Base `  U
)
lcfl6.a  |-  .+  =  ( +g  `  U )
lcfl6.t  |-  .x.  =  ( .s `  U )
lcfl6.s  |-  S  =  (Scalar `  U )
lcfl6.r  |-  R  =  ( Base `  S
)
lcfl6.z  |-  .0.  =  ( 0g `  U )
lcfl6.f  |-  F  =  (LFnl `  U )
lcfl6.l  |-  L  =  (LKer `  U )
lcfl6.c  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
lcfl6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcfl6.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lcfl6  |-  ( ph  ->  ( G  e.  C  <->  ( ( L `  G
)  =  V  \/  E. x  e.  ( V 
\  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) ) )
Distinct variable groups:    v, k, w,  .+    f, k, v, w, x,  ._|_    w,  .0. , x    x, C    f, G, x   
f, F    f, L, x    ph, x    R, k,
v    S, k, w, x   
v, V, x    x, U    .x. , k, v, w
Allowed substitution hints:    ph( w, v, f, k)    C( w, v, f, k)    .+ ( x, f)    R( x, w, f)    S( v, f)    .x. ( x, f)    U( w, v, f, k)    F( x, w, v, k)    G( w, v, k)    H( x, w, v, f, k)    K( x, w, v, f, k)    L( w, v, k)    V( w, f, k)    W( x, w, v, f, k)    .0. ( v, f, k)

Proof of Theorem lcfl6
StepHypRef Expression
1 df-ne 2573 . . . . 5  |-  ( ( L `  G )  =/=  V  <->  -.  ( L `  G )  =  V )
2 lcfl6.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
3 lcfl6.o . . . . . . . 8  |-  ._|_  =  ( ( ocH `  K
) `  W )
4 lcfl6.u . . . . . . . 8  |-  U  =  ( ( DVecH `  K
) `  W )
5 lcfl6.v . . . . . . . 8  |-  V  =  ( Base `  U
)
6 lcfl6.s . . . . . . . 8  |-  S  =  (Scalar `  U )
7 lcfl6.z . . . . . . . 8  |-  .0.  =  ( 0g `  U )
8 eqid 2408 . . . . . . . 8  |-  ( 1r
`  S )  =  ( 1r `  S
)
9 lcfl6.f . . . . . . . 8  |-  F  =  (LFnl `  U )
10 lcfl6.l . . . . . . . 8  |-  L  =  (LKer `  U )
11 lcfl6.k . . . . . . . . 9  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
1211ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 lcfl6.g . . . . . . . . 9  |-  ( ph  ->  G  e.  F )
1413ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  G  e.  F )
15 lcfl6.c . . . . . . . . . . . . . 14  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
162, 3, 4, 5, 9, 10, 15, 11, 13lcfl2 31980 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G  e.  C  <->  ( (  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V  \/  ( L `
 G )  =  V ) ) )
1716biimpa 471 . . . . . . . . . . . 12  |-  ( (
ph  /\  G  e.  C )  ->  (
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V  \/  ( L `
 G )  =  V ) )
1817orcomd 378 . . . . . . . . . . 11  |-  ( (
ph  /\  G  e.  C )  ->  (
( L `  G
)  =  V  \/  (  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V ) )
1918ord 367 . . . . . . . . . 10  |-  ( (
ph  /\  G  e.  C )  ->  ( -.  ( L `  G
)  =  V  -> 
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V ) )
201, 19syl5bi 209 . . . . . . . . 9  |-  ( (
ph  /\  G  e.  C )  ->  (
( L `  G
)  =/=  V  -> 
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V ) )
2120imp 419 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  (  ._|_  `  (  ._|_  `  ( L `  G )
) )  =/=  V
)
222, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 21dochkr1 31965 . . . . . . 7  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  E. x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } ) ( G `  x )  =  ( 1r `  S ) )
232, 4, 11dvhlmod 31597 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  e.  LMod )
245, 9, 10, 23, 13lkrssv 29583 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( L `  G
)  C_  V )
252, 4, 5, 3dochssv 31842 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( L `  G )  C_  V
)  ->  (  ._|_  `  ( L `  G
) )  C_  V
)
2611, 24, 25syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  (  ._|_  `  ( L `
 G ) ) 
C_  V )
2726ssdifd 3447 . . . . . . . . . . . 12  |-  ( ph  ->  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  C_  ( V  \  {  .0.  } ) )
2827ad3antrrr 711 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  -> 
( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  C_  ( V  \  {  .0.  } ) )
29 simprl 733 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  ->  x  e.  ( (  ._|_  `  ( L `  G ) )  \  {  .0.  } ) )
3028, 29sseldd 3313 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  ->  x  e.  ( V  \  {  .0.  } ) )
31 lcfl6.a . . . . . . . . . . 11  |-  .+  =  ( +g  `  U )
32 lcfl6.t . . . . . . . . . . 11  |-  .x.  =  ( .s `  U )
33 lcfl6.r . . . . . . . . . . 11  |-  R  =  ( Base `  S
)
3411ad3antrrr 711 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
3513ad3antrrr 711 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  ->  G  e.  F )
36 simprr 734 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  -> 
( G `  x
)  =  ( 1r
`  S ) )
372, 3, 4, 5, 31, 32, 6, 8, 33, 7, 9, 10, 34, 35, 29, 36lcfl6lem 31985 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  ->  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) ) )
3830, 37jca 519 . . . . . . . . 9  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  -> 
( x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
3938ex 424 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  (
( x  e.  ( (  ._|_  `  ( L `
 G ) ) 
\  {  .0.  }
)  /\  ( G `  x )  =  ( 1r `  S ) )  ->  ( x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) ) ) )
4039reximdv2 2779 . . . . . . 7  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  ( E. x  e.  (
(  ._|_  `  ( L `  G ) )  \  {  .0.  } ) ( G `  x )  =  ( 1r `  S )  ->  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
4122, 40mpd 15 . . . . . 6  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )
4241ex 424 . . . . 5  |-  ( (
ph  /\  G  e.  C )  ->  (
( L `  G
)  =/=  V  ->  E. x  e.  ( V  \  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
431, 42syl5bir 210 . . . 4  |-  ( (
ph  /\  G  e.  C )  ->  ( -.  ( L `  G
)  =  V  ->  E. x  e.  ( V  \  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
4443orrd 368 . . 3  |-  ( (
ph  /\  G  e.  C )  ->  (
( L `  G
)  =  V  \/  E. x  e.  ( V 
\  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
4544ex 424 . 2  |-  ( ph  ->  ( G  e.  C  ->  ( ( L `  G )  =  V  \/  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) ) )
46 olc 374 . . . 4  |-  ( ( L `  G )  =  V  ->  (
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V  \/  ( L `
 G )  =  V ) )
4746, 16syl5ibr 213 . . 3  |-  ( ph  ->  ( ( L `  G )  =  V  ->  G  e.  C
) )
4811adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
49 eldifi 3433 . . . . . . . . . . 11  |-  ( x  e.  ( V  \  {  .0.  } )  ->  x  e.  V )
5049adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  x  e.  V )
5150snssd 3907 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  { x }  C_  V )
52 eqid 2408 . . . . . . . . . 10  |-  ( (
DIsoH `  K ) `  W )  =  ( ( DIsoH `  K ) `  W )
532, 52, 4, 5, 3dochcl 31840 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  { x }  C_  V )  ->  (  ._|_  `  { x }
)  e.  ran  (
( DIsoH `  K ) `  W ) )
5448, 51, 53syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  (  ._|_  `  { x }
)  e.  ran  (
( DIsoH `  K ) `  W ) )
552, 52, 3dochoc 31854 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (  ._|_  `  {
x } )  e. 
ran  ( ( DIsoH `  K ) `  W
) )  ->  (  ._|_  `  (  ._|_  `  (  ._|_  `  { x }
) ) )  =  (  ._|_  `  { x } ) )
5648, 54, 55syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  (  ._|_  `  (  ._|_  `  (  ._|_  `  { x }
) ) )  =  (  ._|_  `  { x } ) )
57563adant3 977 . . . . . 6  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
(  ._|_  `  (  ._|_  `  (  ._|_  `  { x } ) ) )  =  (  ._|_  `  {
x } ) )
58 simp3 959 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  ->  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) ) )
5958fveq2d 5695 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
( L `  G
)  =  ( L `
 ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) ) )
60 eqid 2408 . . . . . . . . . . 11  |-  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) )
61 simpr 448 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  x  e.  ( V  \  {  .0.  } ) )
622, 3, 4, 5, 7, 31, 32, 10, 6, 33, 60, 48, 61dochsnkr2 31960 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) ) )  =  (  ._|_  `  { x } ) )
63623adant3 977 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
( L `  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  =  (  ._|_  `  { x } ) )
6459, 63eqtrd 2440 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
( L `  G
)  =  (  ._|_  `  { x } ) )
6564fveq2d 5695 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
(  ._|_  `  ( L `  G ) )  =  (  ._|_  `  (  ._|_  `  { x } ) ) )
6665fveq2d 5695 . . . . . 6  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  (  ._|_  `  (  ._|_  `  (  ._|_  `  { x } ) ) ) )
6757, 66, 643eqtr4d 2450 . . . . 5  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  ( L `  G
) )
68133ad2ant1 978 . . . . . 6  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  ->  G  e.  F )
6915, 68lcfl1 31979 . . . . 5  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
( G  e.  C  <->  ( 
._|_  `  (  ._|_  `  ( L `  G )
) )  =  ( L `  G ) ) )
7067, 69mpbird 224 . . . 4  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  ->  G  e.  C )
7170rexlimdv3a 2796 . . 3  |-  ( ph  ->  ( E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  ->  G  e.  C ) )
7247, 71jaod 370 . 2  |-  ( ph  ->  ( ( ( L `
 G )  =  V  \/  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  ->  G  e.  C )
)
7345, 72impbid 184 1  |-  ( ph  ->  ( G  e.  C  <->  ( ( L `  G
)  =  V  \/  E. x  e.  ( V 
\  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571   E.wrex 2671   {crab 2674    \ cdif 3281    C_ wss 3284   {csn 3778    e. cmpt 4230   ran crn 4842   ` cfv 5417  (class class class)co 6044   iota_crio 6505   Basecbs 13428   +g cplusg 13488  Scalarcsca 13491   .scvsca 13492   0gc0g 13682   1rcur 15621  LFnlclfn 29544  LKerclk 29572   HLchlt 29837   LHypclh 30470   DVecHcdvh 31565   DIsoHcdih 31715   ocHcoch 31834
This theorem is referenced by:  lcfl7N  31988  lcfrlem9  32037
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-tpos 6442  df-undef 6506  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-oadd 6691  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-2 10018  df-3 10019  df-4 10020  df-5 10021  df-6 10022  df-n0 10182  df-z 10243  df-uz 10449  df-fz 11004  df-struct 13430  df-ndx 13431  df-slot 13432  df-base 13433  df-sets 13434  df-ress 13435  df-plusg 13501  df-mulr 13502  df-sca 13504  df-vsca 13505  df-0g 13686  df-poset 14362  df-plt 14374  df-lub 14390  df-glb 14391  df-join 14392  df-meet 14393  df-p0 14427  df-p1 14428  df-lat 14434  df-clat 14496  df-mnd 14649  df-submnd 14698  df-grp 14771  df-minusg 14772  df-sbg 14773  df-subg 14900  df-cntz 15075  df-lsm 15229  df-cmn 15373  df-abl 15374  df-mgp 15608  df-rng 15622  df-ur 15624  df-oppr 15687  df-dvdsr 15705  df-unit 15706  df-invr 15736  df-dvr 15747  df-drng 15796  df-lmod 15911  df-lss 15968  df-lsp 16007  df-lvec 16134  df-lsatoms 29463  df-lshyp 29464  df-lfl 29545  df-lkr 29573  df-oposet 29663  df-ol 29665  df-oml 29666  df-covers 29753  df-ats 29754  df-atl 29785  df-cvlat 29809  df-hlat 29838  df-llines 29984  df-lplanes 29985  df-lvols 29986  df-lines 29987  df-psubsp 29989  df-pmap 29990  df-padd 30282  df-lhyp 30474  df-laut 30475  df-ldil 30590  df-ltrn 30591  df-trl 30645  df-tgrp 31229  df-tendo 31241  df-edring 31243  df-dveca 31489  df-disoa 31516  df-dvech 31566  df-dib 31626  df-dic 31660  df-dih 31716  df-doch 31835  df-djh 31882
  Copyright terms: Public domain W3C validator