Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl6 Structured version   Unicode version

Theorem lcfl6 32396
Description: Property of a functional with a closed kernel. Note that  ( L `  G )  =  V means the functional is zero by lkr0f 29990. (Contributed by NM, 3-Jan-2015.)
Hypotheses
Ref Expression
lcfl6.h  |-  H  =  ( LHyp `  K
)
lcfl6.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcfl6.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcfl6.v  |-  V  =  ( Base `  U
)
lcfl6.a  |-  .+  =  ( +g  `  U )
lcfl6.t  |-  .x.  =  ( .s `  U )
lcfl6.s  |-  S  =  (Scalar `  U )
lcfl6.r  |-  R  =  ( Base `  S
)
lcfl6.z  |-  .0.  =  ( 0g `  U )
lcfl6.f  |-  F  =  (LFnl `  U )
lcfl6.l  |-  L  =  (LKer `  U )
lcfl6.c  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
lcfl6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcfl6.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lcfl6  |-  ( ph  ->  ( G  e.  C  <->  ( ( L `  G
)  =  V  \/  E. x  e.  ( V 
\  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) ) )
Distinct variable groups:    v, k, w,  .+    f, k, v, w, x,  ._|_    w,  .0. , x    x, C    f, G, x   
f, F    f, L, x    ph, x    R, k,
v    S, k, w, x   
v, V, x    x, U    .x. , k, v, w
Allowed substitution hints:    ph( w, v, f, k)    C( w, v, f, k)    .+ ( x, f)    R( x, w, f)    S( v, f)    .x. ( x, f)    U( w, v, f, k)    F( x, w, v, k)    G( w, v, k)    H( x, w, v, f, k)    K( x, w, v, f, k)    L( w, v, k)    V( w, f, k)    W( x, w, v, f, k)    .0. ( v, f, k)

Proof of Theorem lcfl6
StepHypRef Expression
1 df-ne 2607 . . . . 5  |-  ( ( L `  G )  =/=  V  <->  -.  ( L `  G )  =  V )
2 lcfl6.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
3 lcfl6.o . . . . . . . 8  |-  ._|_  =  ( ( ocH `  K
) `  W )
4 lcfl6.u . . . . . . . 8  |-  U  =  ( ( DVecH `  K
) `  W )
5 lcfl6.v . . . . . . . 8  |-  V  =  ( Base `  U
)
6 lcfl6.s . . . . . . . 8  |-  S  =  (Scalar `  U )
7 lcfl6.z . . . . . . . 8  |-  .0.  =  ( 0g `  U )
8 eqid 2442 . . . . . . . 8  |-  ( 1r
`  S )  =  ( 1r `  S
)
9 lcfl6.f . . . . . . . 8  |-  F  =  (LFnl `  U )
10 lcfl6.l . . . . . . . 8  |-  L  =  (LKer `  U )
11 lcfl6.k . . . . . . . . 9  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
1211ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 lcfl6.g . . . . . . . . 9  |-  ( ph  ->  G  e.  F )
1413ad2antrr 708 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  G  e.  F )
15 lcfl6.c . . . . . . . . . . . . . 14  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
162, 3, 4, 5, 9, 10, 15, 11, 13lcfl2 32389 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G  e.  C  <->  ( (  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V  \/  ( L `
 G )  =  V ) ) )
1716biimpa 472 . . . . . . . . . . . 12  |-  ( (
ph  /\  G  e.  C )  ->  (
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V  \/  ( L `
 G )  =  V ) )
1817orcomd 379 . . . . . . . . . . 11  |-  ( (
ph  /\  G  e.  C )  ->  (
( L `  G
)  =  V  \/  (  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V ) )
1918ord 368 . . . . . . . . . 10  |-  ( (
ph  /\  G  e.  C )  ->  ( -.  ( L `  G
)  =  V  -> 
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V ) )
201, 19syl5bi 210 . . . . . . . . 9  |-  ( (
ph  /\  G  e.  C )  ->  (
( L `  G
)  =/=  V  -> 
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V ) )
2120imp 420 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  (  ._|_  `  (  ._|_  `  ( L `  G )
) )  =/=  V
)
222, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 21dochkr1 32374 . . . . . . 7  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  E. x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } ) ( G `  x )  =  ( 1r `  S ) )
232, 4, 11dvhlmod 32006 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  e.  LMod )
245, 9, 10, 23, 13lkrssv 29992 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( L `  G
)  C_  V )
252, 4, 5, 3dochssv 32251 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( L `  G )  C_  V
)  ->  (  ._|_  `  ( L `  G
) )  C_  V
)
2611, 24, 25syl2anc 644 . . . . . . . . . . . . 13  |-  ( ph  ->  (  ._|_  `  ( L `
 G ) ) 
C_  V )
2726ssdifd 3469 . . . . . . . . . . . 12  |-  ( ph  ->  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  C_  ( V  \  {  .0.  } ) )
2827ad3antrrr 712 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  -> 
( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  C_  ( V  \  {  .0.  } ) )
29 simprl 734 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  ->  x  e.  ( (  ._|_  `  ( L `  G ) )  \  {  .0.  } ) )
3028, 29sseldd 3335 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  ->  x  e.  ( V  \  {  .0.  } ) )
31 lcfl6.a . . . . . . . . . . 11  |-  .+  =  ( +g  `  U )
32 lcfl6.t . . . . . . . . . . 11  |-  .x.  =  ( .s `  U )
33 lcfl6.r . . . . . . . . . . 11  |-  R  =  ( Base `  S
)
3411ad3antrrr 712 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
3513ad3antrrr 712 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  ->  G  e.  F )
36 simprr 735 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  -> 
( G `  x
)  =  ( 1r
`  S ) )
372, 3, 4, 5, 31, 32, 6, 8, 33, 7, 9, 10, 34, 35, 29, 36lcfl6lem 32394 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  ->  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) ) )
3830, 37jca 520 . . . . . . . . 9  |-  ( ( ( ( ph  /\  G  e.  C )  /\  ( L `  G
)  =/=  V )  /\  ( x  e.  ( (  ._|_  `  ( L `  G )
)  \  {  .0.  } )  /\  ( G `
 x )  =  ( 1r `  S
) ) )  -> 
( x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
3938ex 425 . . . . . . . 8  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  (
( x  e.  ( (  ._|_  `  ( L `
 G ) ) 
\  {  .0.  }
)  /\  ( G `  x )  =  ( 1r `  S ) )  ->  ( x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) ) ) )
4039reximdv2 2821 . . . . . . 7  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  ( E. x  e.  (
(  ._|_  `  ( L `  G ) )  \  {  .0.  } ) ( G `  x )  =  ( 1r `  S )  ->  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
4122, 40mpd 15 . . . . . 6  |-  ( ( ( ph  /\  G  e.  C )  /\  ( L `  G )  =/=  V )  ->  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )
4241ex 425 . . . . 5  |-  ( (
ph  /\  G  e.  C )  ->  (
( L `  G
)  =/=  V  ->  E. x  e.  ( V  \  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
431, 42syl5bir 211 . . . 4  |-  ( (
ph  /\  G  e.  C )  ->  ( -.  ( L `  G
)  =  V  ->  E. x  e.  ( V  \  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
4443orrd 369 . . 3  |-  ( (
ph  /\  G  e.  C )  ->  (
( L `  G
)  =  V  \/  E. x  e.  ( V 
\  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
4544ex 425 . 2  |-  ( ph  ->  ( G  e.  C  ->  ( ( L `  G )  =  V  \/  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) ) )
46 olc 375 . . . 4  |-  ( ( L `  G )  =  V  ->  (
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =/= 
V  \/  ( L `
 G )  =  V ) )
4746, 16syl5ibr 214 . . 3  |-  ( ph  ->  ( ( L `  G )  =  V  ->  G  e.  C
) )
4811adantr 453 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
49 eldifi 3455 . . . . . . . . . . 11  |-  ( x  e.  ( V  \  {  .0.  } )  ->  x  e.  V )
5049adantl 454 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  x  e.  V )
5150snssd 3967 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  { x }  C_  V )
52 eqid 2442 . . . . . . . . . 10  |-  ( (
DIsoH `  K ) `  W )  =  ( ( DIsoH `  K ) `  W )
532, 52, 4, 5, 3dochcl 32249 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  { x }  C_  V )  ->  (  ._|_  `  { x }
)  e.  ran  (
( DIsoH `  K ) `  W ) )
5448, 51, 53syl2anc 644 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  (  ._|_  `  { x }
)  e.  ran  (
( DIsoH `  K ) `  W ) )
552, 52, 3dochoc 32263 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  (  ._|_  `  {
x } )  e. 
ran  ( ( DIsoH `  K ) `  W
) )  ->  (  ._|_  `  (  ._|_  `  (  ._|_  `  { x }
) ) )  =  (  ._|_  `  { x } ) )
5648, 54, 55syl2anc 644 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  (  ._|_  `  (  ._|_  `  (  ._|_  `  { x }
) ) )  =  (  ._|_  `  { x } ) )
57563adant3 978 . . . . . 6  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
(  ._|_  `  (  ._|_  `  (  ._|_  `  { x } ) ) )  =  (  ._|_  `  {
x } ) )
58 simp3 960 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  ->  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) ) )
5958fveq2d 5761 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
( L `  G
)  =  ( L `
 ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) ) )
60 eqid 2442 . . . . . . . . . . 11  |-  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) )
61 simpr 449 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  x  e.  ( V  \  {  .0.  } ) )
622, 3, 4, 5, 7, 31, 32, 10, 6, 33, 60, 48, 61dochsnkr2 32369 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } ) )  ->  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) ) )  =  (  ._|_  `  { x } ) )
63623adant3 978 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
( L `  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  =  (  ._|_  `  { x } ) )
6459, 63eqtrd 2474 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
( L `  G
)  =  (  ._|_  `  { x } ) )
6564fveq2d 5761 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
(  ._|_  `  ( L `  G ) )  =  (  ._|_  `  (  ._|_  `  { x } ) ) )
6665fveq2d 5761 . . . . . 6  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  (  ._|_  `  (  ._|_  `  (  ._|_  `  { x } ) ) ) )
6757, 66, 643eqtr4d 2484 . . . . 5  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  ( L `  G
) )
68133ad2ant1 979 . . . . . 6  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  ->  G  e.  F )
6915, 68lcfl1 32388 . . . . 5  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  -> 
( G  e.  C  <->  ( 
._|_  `  (  ._|_  `  ( L `  G )
) )  =  ( L `  G ) ) )
7067, 69mpbird 225 . . . 4  |-  ( (
ph  /\  x  e.  ( V  \  {  .0.  } )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  ->  G  e.  C )
7170rexlimdv3a 2838 . . 3  |-  ( ph  ->  ( E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  ->  G  e.  C ) )
7247, 71jaod 371 . 2  |-  ( ph  ->  ( ( ( L `
 G )  =  V  \/  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  ->  G  e.  C )
)
7345, 72impbid 185 1  |-  ( ph  ->  ( G  e.  C  <->  ( ( L `  G
)  =  V  \/  E. x  e.  ( V 
\  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727    =/= wne 2605   E.wrex 2712   {crab 2715    \ cdif 3303    C_ wss 3306   {csn 3838    e. cmpt 4291   ran crn 4908   ` cfv 5483  (class class class)co 6110   iota_crio 6571   Basecbs 13500   +g cplusg 13560  Scalarcsca 13563   .scvsca 13564   0gc0g 13754   1rcur 15693  LFnlclfn 29953  LKerclk 29981   HLchlt 30246   LHypclh 30879   DVecHcdvh 31974   DIsoHcdih 32124   ocHcoch 32243
This theorem is referenced by:  lcfl7N  32397  lcfrlem9  32446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-fal 1330  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-iin 4120  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-tpos 6508  df-undef 6572  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-oadd 6757  df-er 6934  df-map 7049  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-nn 10032  df-2 10089  df-3 10090  df-4 10091  df-5 10092  df-6 10093  df-n0 10253  df-z 10314  df-uz 10520  df-fz 11075  df-struct 13502  df-ndx 13503  df-slot 13504  df-base 13505  df-sets 13506  df-ress 13507  df-plusg 13573  df-mulr 13574  df-sca 13576  df-vsca 13577  df-0g 13758  df-poset 14434  df-plt 14446  df-lub 14462  df-glb 14463  df-join 14464  df-meet 14465  df-p0 14499  df-p1 14500  df-lat 14506  df-clat 14568  df-mnd 14721  df-submnd 14770  df-grp 14843  df-minusg 14844  df-sbg 14845  df-subg 14972  df-cntz 15147  df-lsm 15301  df-cmn 15445  df-abl 15446  df-mgp 15680  df-rng 15694  df-ur 15696  df-oppr 15759  df-dvdsr 15777  df-unit 15778  df-invr 15808  df-dvr 15819  df-drng 15868  df-lmod 15983  df-lss 16040  df-lsp 16079  df-lvec 16206  df-lsatoms 29872  df-lshyp 29873  df-lfl 29954  df-lkr 29982  df-oposet 30072  df-ol 30074  df-oml 30075  df-covers 30162  df-ats 30163  df-atl 30194  df-cvlat 30218  df-hlat 30247  df-llines 30393  df-lplanes 30394  df-lvols 30395  df-lines 30396  df-psubsp 30398  df-pmap 30399  df-padd 30691  df-lhyp 30883  df-laut 30884  df-ldil 30999  df-ltrn 31000  df-trl 31054  df-tgrp 31638  df-tendo 31650  df-edring 31652  df-dveca 31898  df-disoa 31925  df-dvech 31975  df-dib 32035  df-dic 32069  df-dih 32125  df-doch 32244  df-djh 32291
  Copyright terms: Public domain W3C validator