Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfl7N Unicode version

Theorem lcfl7N 31667
Description: Property of a functional with a closed kernel. Every nonzero functional is determined by a unique nonzero vector. Note that  ( L `  G )  =  V means the functional is zero by lkr0f 29260. (Contributed by NM, 4-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
lcfl6.h  |-  H  =  ( LHyp `  K
)
lcfl6.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcfl6.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcfl6.v  |-  V  =  ( Base `  U
)
lcfl6.a  |-  .+  =  ( +g  `  U )
lcfl6.t  |-  .x.  =  ( .s `  U )
lcfl6.s  |-  S  =  (Scalar `  U )
lcfl6.r  |-  R  =  ( Base `  S
)
lcfl6.z  |-  .0.  =  ( 0g `  U )
lcfl6.f  |-  F  =  (LFnl `  U )
lcfl6.l  |-  L  =  (LKer `  U )
lcfl6.c  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
lcfl6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcfl6.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lcfl7N  |-  ( ph  ->  ( G  e.  C  <->  ( ( L `  G
)  =  V  \/  E! x  e.  ( V  \  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) ) )
Distinct variable groups:    v, k, w,  .+    f, k, v, w, x,  ._|_    w,  .0. , x    x, C    f, G, x   
f, F    f, L, x    ph, x    R, k,
v    S, k, w, x   
v, V, x    x, U    .x. , k, v, w   
x,  .+    x, R    x,  .x.
Allowed substitution hints:    ph( w, v, f, k)    C( w, v, f, k)    .+ ( f)    R( w, f)    S( v, f)    .x. ( f)    U( w, v, f, k)    F( x, w, v, k)    G( w, v, k)    H( x, w, v, f, k)    K( x, w, v, f, k)    L( w, v, k)    V( w, f, k)    W( x, w, v, f, k)    .0. ( v, f, k)

Proof of Theorem lcfl7N
Dummy variables  l  u  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcfl6.h . . 3  |-  H  =  ( LHyp `  K
)
2 lcfl6.o . . 3  |-  ._|_  =  ( ( ocH `  K
) `  W )
3 lcfl6.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
4 lcfl6.v . . 3  |-  V  =  ( Base `  U
)
5 lcfl6.a . . 3  |-  .+  =  ( +g  `  U )
6 lcfl6.t . . 3  |-  .x.  =  ( .s `  U )
7 lcfl6.s . . 3  |-  S  =  (Scalar `  U )
8 lcfl6.r . . 3  |-  R  =  ( Base `  S
)
9 lcfl6.z . . 3  |-  .0.  =  ( 0g `  U )
10 lcfl6.f . . 3  |-  F  =  (LFnl `  U )
11 lcfl6.l . . 3  |-  L  =  (LKer `  U )
12 lcfl6.c . . 3  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
13 lcfl6.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
14 lcfl6.g . . 3  |-  ( ph  ->  G  e.  F )
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14lcfl6 31666 . 2  |-  ( ph  ->  ( G  e.  C  <->  ( ( L `  G
)  =  V  \/  E. x  e.  ( V 
\  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) ) )
1613ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( V 
\  {  .0.  }
)  /\  y  e.  ( V  \  {  .0.  } ) ) )  /\  ( G  =  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
17 eqid 2380 . . . . . . . . . 10  |-  ( u  e.  V  |->  ( iota_ l  e.  R E. z  e.  (  ._|_  `  {
x } ) u  =  ( z  .+  ( l  .x.  x
) ) ) )  =  ( u  e.  V  |->  ( iota_ l  e.  R E. z  e.  (  ._|_  `  { x } ) u  =  ( z  .+  (
l  .x.  x )
) ) )
18 eqid 2380 . . . . . . . . . 10  |-  ( u  e.  V  |->  ( iota_ l  e.  R E. z  e.  (  ._|_  `  {
y } ) u  =  ( z  .+  ( l  .x.  y
) ) ) )  =  ( u  e.  V  |->  ( iota_ l  e.  R E. z  e.  (  ._|_  `  { y } ) u  =  ( z  .+  (
l  .x.  y )
) ) )
19 simplrl 737 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( V 
\  {  .0.  }
)  /\  y  e.  ( V  \  {  .0.  } ) ) )  /\  ( G  =  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) )  ->  x  e.  ( V  \  {  .0.  } ) )
20 simplrr 738 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( V 
\  {  .0.  }
)  /\  y  e.  ( V  \  {  .0.  } ) ) )  /\  ( G  =  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) )  ->  y  e.  ( V  \  {  .0.  } ) )
21 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( V 
\  {  .0.  }
)  /\  y  e.  ( V  \  {  .0.  } ) ) )  /\  ( G  =  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) )  ->  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )
22 eqeq1 2386 . . . . . . . . . . . . . . . 16  |-  ( v  =  u  ->  (
v  =  ( w 
.+  ( k  .x.  x ) )  <->  u  =  ( w  .+  ( k 
.x.  x ) ) ) )
2322rexbidv 2663 . . . . . . . . . . . . . . 15  |-  ( v  =  u  ->  ( E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) )  <->  E. w  e.  (  ._|_  `  { x }
) u  =  ( w  .+  ( k 
.x.  x ) ) ) )
2423riotabidv 6480 . . . . . . . . . . . . . 14  |-  ( v  =  u  ->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w 
.+  ( k  .x.  x ) ) )  =  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) u  =  ( w  .+  (
k  .x.  x )
) ) )
25 oveq1 6020 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  l  ->  (
k  .x.  x )  =  ( l  .x.  x ) )
2625oveq2d 6029 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  l  ->  (
w  .+  ( k  .x.  x ) )  =  ( w  .+  (
l  .x.  x )
) )
2726eqeq2d 2391 . . . . . . . . . . . . . . . . 17  |-  ( k  =  l  ->  (
u  =  ( w 
.+  ( k  .x.  x ) )  <->  u  =  ( w  .+  ( l 
.x.  x ) ) ) )
2827rexbidv 2663 . . . . . . . . . . . . . . . 16  |-  ( k  =  l  ->  ( E. w  e.  (  ._|_  `  { x }
) u  =  ( w  .+  ( k 
.x.  x ) )  <->  E. w  e.  (  ._|_  `  { x }
) u  =  ( w  .+  ( l 
.x.  x ) ) ) )
29 oveq1 6020 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  z  ->  (
w  .+  ( l  .x.  x ) )  =  ( z  .+  (
l  .x.  x )
) )
3029eqeq2d 2391 . . . . . . . . . . . . . . . . 17  |-  ( w  =  z  ->  (
u  =  ( w 
.+  ( l  .x.  x ) )  <->  u  =  ( z  .+  (
l  .x.  x )
) ) )
3130cbvrexv 2869 . . . . . . . . . . . . . . . 16  |-  ( E. w  e.  (  ._|_  `  { x } ) u  =  ( w 
.+  ( l  .x.  x ) )  <->  E. z  e.  (  ._|_  `  {
x } ) u  =  ( z  .+  ( l  .x.  x
) ) )
3228, 31syl6bb 253 . . . . . . . . . . . . . . 15  |-  ( k  =  l  ->  ( E. w  e.  (  ._|_  `  { x }
) u  =  ( w  .+  ( k 
.x.  x ) )  <->  E. z  e.  (  ._|_  `  { x }
) u  =  ( z  .+  ( l 
.x.  x ) ) ) )
3332cbvriotav 6490 . . . . . . . . . . . . . 14  |-  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) u  =  ( w  .+  ( k  .x.  x
) ) )  =  ( iota_ l  e.  R E. z  e.  (  ._|_  `  { x }
) u  =  ( z  .+  ( l 
.x.  x ) ) )
3424, 33syl6eq 2428 . . . . . . . . . . . . 13  |-  ( v  =  u  ->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w 
.+  ( k  .x.  x ) ) )  =  ( iota_ l  e.  R E. z  e.  (  ._|_  `  { x } ) u  =  ( z  .+  (
l  .x.  x )
) ) )
3534cbvmptv 4234 . . . . . . . . . . . 12  |-  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) )  =  ( u  e.  V  |->  ( iota_ l  e.  R E. z  e.  (  ._|_  `  { x } ) u  =  ( z  .+  (
l  .x.  x )
) ) )
3621, 35syl6eq 2428 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( V 
\  {  .0.  }
)  /\  y  e.  ( V  \  {  .0.  } ) ) )  /\  ( G  =  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) )  ->  G  =  ( u  e.  V  |->  ( iota_ l  e.  R E. z  e.  (  ._|_  `  { x }
) u  =  ( z  .+  ( l 
.x.  x ) ) ) ) )
37 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( V 
\  {  .0.  }
)  /\  y  e.  ( V  \  {  .0.  } ) ) )  /\  ( G  =  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) )  ->  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) ) )
38 eqeq1 2386 . . . . . . . . . . . . . . . 16  |-  ( v  =  u  ->  (
v  =  ( w 
.+  ( k  .x.  y ) )  <->  u  =  ( w  .+  ( k 
.x.  y ) ) ) )
3938rexbidv 2663 . . . . . . . . . . . . . . 15  |-  ( v  =  u  ->  ( E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) )  <->  E. w  e.  (  ._|_  `  { y } ) u  =  ( w  .+  ( k 
.x.  y ) ) ) )
4039riotabidv 6480 . . . . . . . . . . . . . 14  |-  ( v  =  u  ->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w 
.+  ( k  .x.  y ) ) )  =  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) u  =  ( w  .+  (
k  .x.  y )
) ) )
41 oveq1 6020 . . . . . . . . . . . . . . . . . . 19  |-  ( k  =  l  ->  (
k  .x.  y )  =  ( l  .x.  y ) )
4241oveq2d 6029 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  l  ->  (
w  .+  ( k  .x.  y ) )  =  ( w  .+  (
l  .x.  y )
) )
4342eqeq2d 2391 . . . . . . . . . . . . . . . . 17  |-  ( k  =  l  ->  (
u  =  ( w 
.+  ( k  .x.  y ) )  <->  u  =  ( w  .+  ( l 
.x.  y ) ) ) )
4443rexbidv 2663 . . . . . . . . . . . . . . . 16  |-  ( k  =  l  ->  ( E. w  e.  (  ._|_  `  { y } ) u  =  ( w  .+  ( k 
.x.  y ) )  <->  E. w  e.  (  ._|_  `  { y } ) u  =  ( w  .+  ( l 
.x.  y ) ) ) )
45 oveq1 6020 . . . . . . . . . . . . . . . . . 18  |-  ( w  =  z  ->  (
w  .+  ( l  .x.  y ) )  =  ( z  .+  (
l  .x.  y )
) )
4645eqeq2d 2391 . . . . . . . . . . . . . . . . 17  |-  ( w  =  z  ->  (
u  =  ( w 
.+  ( l  .x.  y ) )  <->  u  =  ( z  .+  (
l  .x.  y )
) ) )
4746cbvrexv 2869 . . . . . . . . . . . . . . . 16  |-  ( E. w  e.  (  ._|_  `  { y } ) u  =  ( w 
.+  ( l  .x.  y ) )  <->  E. z  e.  (  ._|_  `  {
y } ) u  =  ( z  .+  ( l  .x.  y
) ) )
4844, 47syl6bb 253 . . . . . . . . . . . . . . 15  |-  ( k  =  l  ->  ( E. w  e.  (  ._|_  `  { y } ) u  =  ( w  .+  ( k 
.x.  y ) )  <->  E. z  e.  (  ._|_  `  { y } ) u  =  ( z  .+  ( l 
.x.  y ) ) ) )
4948cbvriotav 6490 . . . . . . . . . . . . . 14  |-  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
y } ) u  =  ( w  .+  ( k  .x.  y
) ) )  =  ( iota_ l  e.  R E. z  e.  (  ._|_  `  { y } ) u  =  ( z  .+  ( l 
.x.  y ) ) )
5040, 49syl6eq 2428 . . . . . . . . . . . . 13  |-  ( v  =  u  ->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w 
.+  ( k  .x.  y ) ) )  =  ( iota_ l  e.  R E. z  e.  (  ._|_  `  { y } ) u  =  ( z  .+  (
l  .x.  y )
) ) )
5150cbvmptv 4234 . . . . . . . . . . . 12  |-  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
y } ) v  =  ( w  .+  ( k  .x.  y
) ) ) )  =  ( u  e.  V  |->  ( iota_ l  e.  R E. z  e.  (  ._|_  `  { y } ) u  =  ( z  .+  (
l  .x.  y )
) ) )
5237, 51syl6eq 2428 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( V 
\  {  .0.  }
)  /\  y  e.  ( V  \  {  .0.  } ) ) )  /\  ( G  =  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) )  ->  G  =  ( u  e.  V  |->  ( iota_ l  e.  R E. z  e.  (  ._|_  `  { y } ) u  =  ( z  .+  ( l 
.x.  y ) ) ) ) )
5336, 52eqtr3d 2414 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( V 
\  {  .0.  }
)  /\  y  e.  ( V  \  {  .0.  } ) ) )  /\  ( G  =  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) )  ->  ( u  e.  V  |->  ( iota_ l  e.  R E. z  e.  (  ._|_  `  {
x } ) u  =  ( z  .+  ( l  .x.  x
) ) ) )  =  ( u  e.  V  |->  ( iota_ l  e.  R E. z  e.  (  ._|_  `  { y } ) u  =  ( z  .+  (
l  .x.  y )
) ) ) )
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 53lcfl7lem 31665 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( V 
\  {  .0.  }
)  /\  y  e.  ( V  \  {  .0.  } ) ) )  /\  ( G  =  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) )  ->  x  =  y )
5554ex 424 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( V  \  {  .0.  } )  /\  y  e.  ( V  \  {  .0.  } ) ) )  ->  ( ( G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
y } ) v  =  ( w  .+  ( k  .x.  y
) ) ) ) )  ->  x  =  y ) )
5655ralrimivva 2734 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( V  \  {  .0.  } ) A. y  e.  ( V  \  {  .0.  } ) ( ( G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) )  /\  G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) ) )  ->  x  =  y )
)
5756a1d 23 . . . . . 6  |-  ( ph  ->  ( E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  ->  A. x  e.  ( V  \  {  .0.  } ) A. y  e.  ( V  \  {  .0.  } ) ( ( G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) )  /\  G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) ) )  ->  x  =  y )
) )
5857ancld 537 . . . . 5  |-  ( ph  ->  ( E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  ->  ( E. x  e.  ( V  \  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  /\  A. x  e.  ( V  \  {  .0.  } ) A. y  e.  ( V  \  {  .0.  } ) ( ( G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) )  /\  G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
y } ) v  =  ( w  .+  ( k  .x.  y
) ) ) ) )  ->  x  =  y ) ) ) )
59 sneq 3761 . . . . . . . . . . 11  |-  ( x  =  y  ->  { x }  =  { y } )
6059fveq2d 5665 . . . . . . . . . 10  |-  ( x  =  y  ->  (  ._|_  `  { x }
)  =  (  ._|_  `  { y } ) )
61 oveq2 6021 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
k  .x.  x )  =  ( k  .x.  y ) )
6261oveq2d 6029 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
w  .+  ( k  .x.  x ) )  =  ( w  .+  (
k  .x.  y )
) )
6362eqeq2d 2391 . . . . . . . . . 10  |-  ( x  =  y  ->  (
v  =  ( w 
.+  ( k  .x.  x ) )  <->  v  =  ( w  .+  ( k 
.x.  y ) ) ) )
6460, 63rexeqbidv 2853 . . . . . . . . 9  |-  ( x  =  y  ->  ( E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) )  <->  E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) )
6564riotabidv 6480 . . . . . . . 8  |-  ( x  =  y  ->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w 
.+  ( k  .x.  x ) ) )  =  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) )
6665mpteq2dv 4230 . . . . . . 7  |-  ( x  =  y  ->  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) ) )
6766eqeq2d 2391 . . . . . 6  |-  ( x  =  y  ->  ( G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) )  <-> 
G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
y } ) v  =  ( w  .+  ( k  .x.  y
) ) ) ) ) )
6867reu4 3064 . . . . 5  |-  ( E! x  e.  ( V 
\  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  <->  ( E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) )  /\  A. x  e.  ( V  \  {  .0.  } ) A. y  e.  ( V  \  {  .0.  } ) ( ( G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) )  /\  G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) ) )  ->  x  =  y )
) )
6958, 68syl6ibr 219 . . . 4  |-  ( ph  ->  ( E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  ->  E! x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) ) ) )
70 reurex 2858 . . . 4  |-  ( E! x  e.  ( V 
\  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  ->  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )
7169, 70impbid1 195 . . 3  |-  ( ph  ->  ( E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  <->  E! x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) )
7271orbi2d 683 . 2  |-  ( ph  ->  ( ( ( L `
 G )  =  V  \/  E. x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) )  <->  ( ( L `  G )  =  V  \/  E! x  e.  ( V  \  {  .0.  } ) G  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) ) ) ) )
7315, 72bitrd 245 1  |-  ( ph  ->  ( G  e.  C  <->  ( ( L `  G
)  =  V  \/  E! x  e.  ( V  \  {  .0.  }
) G  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2642   E.wrex 2643   E!wreu 2644   {crab 2646    \ cdif 3253   {csn 3750    e. cmpt 4200   ` cfv 5387  (class class class)co 6013   iota_crio 6471   Basecbs 13389   +g cplusg 13449  Scalarcsca 13452   .scvsca 13453   0gc0g 13643  LFnlclfn 29223  LKerclk 29251   HLchlt 29516   LHypclh 30149   DVecHcdvh 31244   ocHcoch 31513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-iin 4031  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-tpos 6408  df-undef 6472  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-map 6949  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-n0 10147  df-z 10208  df-uz 10414  df-fz 10969  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-mulr 13463  df-sca 13465  df-vsca 13466  df-0g 13647  df-poset 14323  df-plt 14335  df-lub 14351  df-glb 14352  df-join 14353  df-meet 14354  df-p0 14388  df-p1 14389  df-lat 14395  df-clat 14457  df-mnd 14610  df-submnd 14659  df-grp 14732  df-minusg 14733  df-sbg 14734  df-subg 14861  df-cntz 15036  df-lsm 15190  df-cmn 15334  df-abl 15335  df-mgp 15569  df-rng 15583  df-ur 15585  df-oppr 15648  df-dvdsr 15666  df-unit 15667  df-invr 15697  df-dvr 15708  df-drng 15757  df-lmod 15872  df-lss 15929  df-lsp 15968  df-lvec 16095  df-lsatoms 29142  df-lshyp 29143  df-lfl 29224  df-lkr 29252  df-oposet 29342  df-ol 29344  df-oml 29345  df-covers 29432  df-ats 29433  df-atl 29464  df-cvlat 29488  df-hlat 29517  df-llines 29663  df-lplanes 29664  df-lvols 29665  df-lines 29666  df-psubsp 29668  df-pmap 29669  df-padd 29961  df-lhyp 30153  df-laut 30154  df-ldil 30269  df-ltrn 30270  df-trl 30324  df-tgrp 30908  df-tendo 30920  df-edring 30922  df-dveca 31168  df-disoa 31195  df-dvech 31245  df-dib 31305  df-dic 31339  df-dih 31395  df-doch 31514  df-djh 31561
  Copyright terms: Public domain W3C validator