Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfls1c Unicode version

Theorem lcfls1c 31726
Description: Property of a functional with a closed kernel. (Contributed by NM, 28-Jan-2015.)
Hypotheses
Ref Expression
lcfls1.c  |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `
 f ) ) )  =  ( L `
 f )  /\  (  ._|_  `  ( L `  f ) )  C_  Q ) }
lcfls1c.c  |-  D  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
Assertion
Ref Expression
lcfls1c  |-  ( G  e.  C  <->  ( G  e.  D  /\  (  ._|_  `  ( L `  G ) )  C_  Q ) )
Distinct variable groups:    f, F    f, G    f, L    ._|_ , f    Q, f
Allowed substitution hints:    C( f)    D( f)

Proof of Theorem lcfls1c
StepHypRef Expression
1 df-3an 936 . 2  |-  ( ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  ( L `  G
)  /\  (  ._|_  `  ( L `  G
) )  C_  Q
)  <->  ( ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G )
) )  =  ( L `  G ) )  /\  (  ._|_  `  ( L `  G
) )  C_  Q
) )
2 lcfls1.c . . 3  |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `
 f ) ) )  =  ( L `
 f )  /\  (  ._|_  `  ( L `  f ) )  C_  Q ) }
32lcfls1lem 31724 . 2  |-  ( G  e.  C  <->  ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G )
) )  =  ( L `  G )  /\  (  ._|_  `  ( L `  G )
)  C_  Q )
)
4 lcfls1c.c . . . 4  |-  D  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
54lcfl1lem 31681 . . 3  |-  ( G  e.  D  <->  ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G )
) )  =  ( L `  G ) ) )
65anbi1i 676 . 2  |-  ( ( G  e.  D  /\  (  ._|_  `  ( L `  G ) )  C_  Q )  <->  ( ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  ( L `  G
) )  /\  (  ._|_  `  ( L `  G ) )  C_  Q ) )
71, 3, 63bitr4i 268 1  |-  ( G  e.  C  <->  ( G  e.  D  /\  (  ._|_  `  ( L `  G ) )  C_  Q ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {crab 2547    C_ wss 3152   ` cfv 5255
This theorem is referenced by:  lclkrslem1  31727  lclkrslem2  31728
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263
  Copyright terms: Public domain W3C validator