Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfls1lem Structured version   Unicode version

Theorem lcfls1lem 32394
Description: Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.)
Hypothesis
Ref Expression
lcfls1.c  |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `
 f ) ) )  =  ( L `
 f )  /\  (  ._|_  `  ( L `  f ) )  C_  Q ) }
Assertion
Ref Expression
lcfls1lem  |-  ( G  e.  C  <->  ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G )
) )  =  ( L `  G )  /\  (  ._|_  `  ( L `  G )
)  C_  Q )
)
Distinct variable groups:    f, F    f, G    f, L    ._|_ , f    Q, f
Allowed substitution hint:    C( f)

Proof of Theorem lcfls1lem
StepHypRef Expression
1 fveq2 5730 . . . . . . 7  |-  ( f  =  G  ->  ( L `  f )  =  ( L `  G ) )
21fveq2d 5734 . . . . . 6  |-  ( f  =  G  ->  (  ._|_  `  ( L `  f ) )  =  (  ._|_  `  ( L `
 G ) ) )
32fveq2d 5734 . . . . 5  |-  ( f  =  G  ->  (  ._|_  `  (  ._|_  `  ( L `  f )
) )  =  ( 
._|_  `  (  ._|_  `  ( L `  G )
) ) )
43, 1eqeq12d 2452 . . . 4  |-  ( f  =  G  ->  (
(  ._|_  `  (  ._|_  `  ( L `  f
) ) )  =  ( L `  f
)  <->  (  ._|_  `  (  ._|_  `  ( L `  G ) ) )  =  ( L `  G ) ) )
52sseq1d 3377 . . . 4  |-  ( f  =  G  ->  (
(  ._|_  `  ( L `  f ) )  C_  Q 
<->  (  ._|_  `  ( L `
 G ) ) 
C_  Q ) )
64, 5anbi12d 693 . . 3  |-  ( f  =  G  ->  (
( (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f )  /\  (  ._|_  `  ( L `  f ) )  C_  Q )  <->  ( (  ._|_  `  (  ._|_  `  ( L `  G )
) )  =  ( L `  G )  /\  (  ._|_  `  ( L `  G )
)  C_  Q )
) )
7 lcfls1.c . . 3  |-  C  =  { f  e.  F  |  ( (  ._|_  `  (  ._|_  `  ( L `
 f ) ) )  =  ( L `
 f )  /\  (  ._|_  `  ( L `  f ) )  C_  Q ) }
86, 7elrab2 3096 . 2  |-  ( G  e.  C  <->  ( G  e.  F  /\  (
(  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  ( L `  G
)  /\  (  ._|_  `  ( L `  G
) )  C_  Q
) ) )
9 3anass 941 . 2  |-  ( ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G
) ) )  =  ( L `  G
)  /\  (  ._|_  `  ( L `  G
) )  C_  Q
)  <->  ( G  e.  F  /\  ( ( 
._|_  `  (  ._|_  `  ( L `  G )
) )  =  ( L `  G )  /\  (  ._|_  `  ( L `  G )
)  C_  Q )
) )
108, 9bitr4i 245 1  |-  ( G  e.  C  <->  ( G  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  G )
) )  =  ( L `  G )  /\  (  ._|_  `  ( L `  G )
)  C_  Q )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   {crab 2711    C_ wss 3322   ` cfv 5456
This theorem is referenced by:  lcfls1N  32395  lcfls1c  32396  lclkrslem1  32397  lclkrslem2  32398  lclkrs  32399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-iota 5420  df-fv 5464
  Copyright terms: Public domain W3C validator