Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem2 Structured version   Unicode version

Theorem lcfrlem2 32403
Description: Lemma for lcfr 32445. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
lcfrlem1.v  |-  V  =  ( Base `  U
)
lcfrlem1.s  |-  S  =  (Scalar `  U )
lcfrlem1.q  |-  .X.  =  ( .r `  S )
lcfrlem1.z  |-  .0.  =  ( 0g `  S )
lcfrlem1.i  |-  I  =  ( invr `  S
)
lcfrlem1.f  |-  F  =  (LFnl `  U )
lcfrlem1.d  |-  D  =  (LDual `  U )
lcfrlem1.t  |-  .x.  =  ( .s `  D )
lcfrlem1.m  |-  .-  =  ( -g `  D )
lcfrlem1.u  |-  ( ph  ->  U  e.  LVec )
lcfrlem1.e  |-  ( ph  ->  E  e.  F )
lcfrlem1.g  |-  ( ph  ->  G  e.  F )
lcfrlem1.x  |-  ( ph  ->  X  e.  V )
lcfrlem1.n  |-  ( ph  ->  ( G `  X
)  =/=  .0.  )
lcfrlem1.h  |-  H  =  ( E  .-  (
( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )
lcfrlem2.l  |-  L  =  (LKer `  U )
Assertion
Ref Expression
lcfrlem2  |-  ( ph  ->  ( ( L `  E )  i^i  ( L `  G )
)  C_  ( L `  H ) )

Proof of Theorem lcfrlem2
StepHypRef Expression
1 lcfrlem1.s . . . . . 6  |-  S  =  (Scalar `  U )
2 eqid 2438 . . . . . 6  |-  ( Base `  S )  =  (
Base `  S )
3 lcfrlem1.f . . . . . 6  |-  F  =  (LFnl `  U )
4 lcfrlem2.l . . . . . 6  |-  L  =  (LKer `  U )
5 lcfrlem1.d . . . . . 6  |-  D  =  (LDual `  U )
6 lcfrlem1.t . . . . . 6  |-  .x.  =  ( .s `  D )
7 lcfrlem1.u . . . . . 6  |-  ( ph  ->  U  e.  LVec )
8 lcfrlem1.g . . . . . 6  |-  ( ph  ->  G  e.  F )
9 lveclmod 16180 . . . . . . . . 9  |-  ( U  e.  LVec  ->  U  e. 
LMod )
107, 9syl 16 . . . . . . . 8  |-  ( ph  ->  U  e.  LMod )
111lmodrng 15960 . . . . . . . 8  |-  ( U  e.  LMod  ->  S  e. 
Ring )
1210, 11syl 16 . . . . . . 7  |-  ( ph  ->  S  e.  Ring )
131lvecdrng 16179 . . . . . . . . 9  |-  ( U  e.  LVec  ->  S  e.  DivRing )
147, 13syl 16 . . . . . . . 8  |-  ( ph  ->  S  e.  DivRing )
15 lcfrlem1.x . . . . . . . . 9  |-  ( ph  ->  X  e.  V )
16 lcfrlem1.v . . . . . . . . . 10  |-  V  =  ( Base `  U
)
171, 2, 16, 3lflcl 29924 . . . . . . . . 9  |-  ( ( U  e.  LVec  /\  G  e.  F  /\  X  e.  V )  ->  ( G `  X )  e.  ( Base `  S
) )
187, 8, 15, 17syl3anc 1185 . . . . . . . 8  |-  ( ph  ->  ( G `  X
)  e.  ( Base `  S ) )
19 lcfrlem1.n . . . . . . . 8  |-  ( ph  ->  ( G `  X
)  =/=  .0.  )
20 lcfrlem1.z . . . . . . . . 9  |-  .0.  =  ( 0g `  S )
21 lcfrlem1.i . . . . . . . . 9  |-  I  =  ( invr `  S
)
222, 20, 21drnginvrcl 15854 . . . . . . . 8  |-  ( ( S  e.  DivRing  /\  ( G `  X )  e.  ( Base `  S
)  /\  ( G `  X )  =/=  .0.  )  ->  ( I `  ( G `  X ) )  e.  ( Base `  S ) )
2314, 18, 19, 22syl3anc 1185 . . . . . . 7  |-  ( ph  ->  ( I `  ( G `  X )
)  e.  ( Base `  S ) )
24 lcfrlem1.e . . . . . . . 8  |-  ( ph  ->  E  e.  F )
251, 2, 16, 3lflcl 29924 . . . . . . . 8  |-  ( ( U  e.  LVec  /\  E  e.  F  /\  X  e.  V )  ->  ( E `  X )  e.  ( Base `  S
) )
267, 24, 15, 25syl3anc 1185 . . . . . . 7  |-  ( ph  ->  ( E `  X
)  e.  ( Base `  S ) )
27 lcfrlem1.q . . . . . . . 8  |-  .X.  =  ( .r `  S )
282, 27rngcl 15679 . . . . . . 7  |-  ( ( S  e.  Ring  /\  (
I `  ( G `  X ) )  e.  ( Base `  S
)  /\  ( E `  X )  e.  (
Base `  S )
)  ->  ( (
I `  ( G `  X ) )  .X.  ( E `  X ) )  e.  ( Base `  S ) )
2912, 23, 26, 28syl3anc 1185 . . . . . 6  |-  ( ph  ->  ( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  e.  ( Base `  S
) )
301, 2, 3, 4, 5, 6, 7, 8, 29lkrss 30028 . . . . 5  |-  ( ph  ->  ( L `  G
)  C_  ( L `  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) ) )
313, 1, 2, 5, 6, 10, 29, 8ldualvscl 29999 . . . . . 6  |-  ( ph  ->  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G )  e.  F )
32 rnggrp 15671 . . . . . . . 8  |-  ( S  e.  Ring  ->  S  e. 
Grp )
3312, 32syl 16 . . . . . . 7  |-  ( ph  ->  S  e.  Grp )
34 eqid 2438 . . . . . . . . 9  |-  ( 1r
`  S )  =  ( 1r `  S
)
352, 34rngidcl 15686 . . . . . . . 8  |-  ( S  e.  Ring  ->  ( 1r
`  S )  e.  ( Base `  S
) )
3612, 35syl 16 . . . . . . 7  |-  ( ph  ->  ( 1r `  S
)  e.  ( Base `  S ) )
37 eqid 2438 . . . . . . . 8  |-  ( inv g `  S )  =  ( inv g `  S )
382, 37grpinvcl 14852 . . . . . . 7  |-  ( ( S  e.  Grp  /\  ( 1r `  S )  e.  ( Base `  S
) )  ->  (
( inv g `  S ) `  ( 1r `  S ) )  e.  ( Base `  S
) )
3933, 36, 38syl2anc 644 . . . . . 6  |-  ( ph  ->  ( ( inv g `  S ) `  ( 1r `  S ) )  e.  ( Base `  S
) )
401, 2, 3, 4, 5, 6, 7, 31, 39lkrss 30028 . . . . 5  |-  ( ph  ->  ( L `  (
( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )  C_  ( L `  ( ( ( inv g `  S ) `  ( 1r `  S ) ) 
.x.  ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) ) ) )
4130, 40sstrd 3360 . . . 4  |-  ( ph  ->  ( L `  G
)  C_  ( L `  ( ( ( inv g `  S ) `
 ( 1r `  S ) )  .x.  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) ) ) )
42 sslin 3569 . . . 4  |-  ( ( L `  G ) 
C_  ( L `  ( ( ( inv g `  S ) `
 ( 1r `  S ) )  .x.  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) ) )  ->  (
( L `  E
)  i^i  ( L `  G ) )  C_  ( ( L `  E )  i^i  ( L `  ( (
( inv g `  S ) `  ( 1r `  S ) ) 
.x.  ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) ) ) ) )
4341, 42syl 16 . . 3  |-  ( ph  ->  ( ( L `  E )  i^i  ( L `  G )
)  C_  ( ( L `  E )  i^i  ( L `  (
( ( inv g `  S ) `  ( 1r `  S ) ) 
.x.  ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) ) ) ) )
44 eqid 2438 . . . 4  |-  ( +g  `  D )  =  ( +g  `  D )
453, 1, 2, 5, 6, 10, 39, 31ldualvscl 29999 . . . 4  |-  ( ph  ->  ( ( ( inv g `  S ) `
 ( 1r `  S ) )  .x.  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )  e.  F )
463, 4, 5, 44, 10, 24, 45lkrin 30024 . . 3  |-  ( ph  ->  ( ( L `  E )  i^i  ( L `  ( (
( inv g `  S ) `  ( 1r `  S ) ) 
.x.  ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) ) ) )  C_  ( L `  ( E ( +g  `  D ) ( ( ( inv g `  S ) `  ( 1r `  S ) ) 
.x.  ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) ) ) ) )
4743, 46sstrd 3360 . 2  |-  ( ph  ->  ( ( L `  E )  i^i  ( L `  G )
)  C_  ( L `  ( E ( +g  `  D ) ( ( ( inv g `  S ) `  ( 1r `  S ) ) 
.x.  ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) ) ) ) )
48 lcfrlem1.h . . . 4  |-  H  =  ( E  .-  (
( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )
4948fveq2i 5733 . . 3  |-  ( L `
 H )  =  ( L `  ( E  .-  ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) ) )
50 lcfrlem1.m . . . . 5  |-  .-  =  ( -g `  D )
511, 37, 34, 3, 5, 44, 6, 50, 10, 24, 31ldualvsub 30015 . . . 4  |-  ( ph  ->  ( E  .-  (
( ( I `  ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) )  =  ( E ( +g  `  D ) ( ( ( inv g `  S ) `  ( 1r `  S ) ) 
.x.  ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) ) ) )
5251fveq2d 5734 . . 3  |-  ( ph  ->  ( L `  ( E  .-  ( ( ( I `  ( G `
 X ) ) 
.X.  ( E `  X ) )  .x.  G ) ) )  =  ( L `  ( E ( +g  `  D
) ( ( ( inv g `  S
) `  ( 1r `  S ) )  .x.  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) ) ) ) )
5349, 52syl5req 2483 . 2  |-  ( ph  ->  ( L `  ( E ( +g  `  D
) ( ( ( inv g `  S
) `  ( 1r `  S ) )  .x.  ( ( ( I `
 ( G `  X ) )  .X.  ( E `  X ) )  .x.  G ) ) ) )  =  ( L `  H
) )
5447, 53sseqtrd 3386 1  |-  ( ph  ->  ( ( L `  E )  i^i  ( L `  G )
)  C_  ( L `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726    =/= wne 2601    i^i cin 3321    C_ wss 3322   ` cfv 5456  (class class class)co 6083   Basecbs 13471   +g cplusg 13531   .rcmulr 13532  Scalarcsca 13534   .scvsca 13535   0gc0g 13725   Grpcgrp 14687   inv gcminusg 14688   -gcsg 14690   Ringcrg 15662   1rcur 15664   invrcinvr 15778   DivRingcdr 15837   LModclmod 15952   LVecclvec 16176  LFnlclfn 29917  LKerclk 29945  LDualcld 29983
This theorem is referenced by:  lcfrlem35  32437
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-tpos 6481  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-n0 10224  df-z 10285  df-uz 10491  df-fz 11046  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-sca 13547  df-vsca 13548  df-0g 13729  df-mnd 14692  df-grp 14814  df-minusg 14815  df-sbg 14816  df-cmn 15416  df-abl 15417  df-mgp 15651  df-rng 15665  df-ur 15667  df-oppr 15730  df-dvdsr 15748  df-unit 15749  df-invr 15779  df-drng 15839  df-lmod 15954  df-lss 16011  df-lvec 16177  df-lfl 29918  df-lkr 29946  df-ldual 29984
  Copyright terms: Public domain W3C validator