Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem30 Structured version   Unicode version

Theorem lcfrlem30 32372
Description: Lemma for lcfr 32385. (Contributed by NM, 6-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem17.h  |-  H  =  ( LHyp `  K
)
lcfrlem17.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcfrlem17.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcfrlem17.v  |-  V  =  ( Base `  U
)
lcfrlem17.p  |-  .+  =  ( +g  `  U )
lcfrlem17.z  |-  .0.  =  ( 0g `  U )
lcfrlem17.n  |-  N  =  ( LSpan `  U )
lcfrlem17.a  |-  A  =  (LSAtoms `  U )
lcfrlem17.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcfrlem17.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
lcfrlem17.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
lcfrlem17.ne  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
lcfrlem22.b  |-  B  =  ( ( N `  { X ,  Y }
)  i^i  (  ._|_  `  { ( X  .+  Y ) } ) )
lcfrlem24.t  |-  .x.  =  ( .s `  U )
lcfrlem24.s  |-  S  =  (Scalar `  U )
lcfrlem24.q  |-  Q  =  ( 0g `  S
)
lcfrlem24.r  |-  R  =  ( Base `  S
)
lcfrlem24.j  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
lcfrlem24.ib  |-  ( ph  ->  I  e.  B )
lcfrlem24.l  |-  L  =  (LKer `  U )
lcfrlem25.d  |-  D  =  (LDual `  U )
lcfrlem28.jn  |-  ( ph  ->  ( ( J `  Y ) `  I
)  =/=  Q )
lcfrlem29.i  |-  F  =  ( invr `  S
)
lcfrlem30.m  |-  .-  =  ( -g `  D )
lcfrlem30.c  |-  C  =  ( ( J `  X )  .-  (
( ( F `  ( ( J `  Y ) `  I
) ) ( .r
`  S ) ( ( J `  X
) `  I )
) ( .s `  D ) ( J `
 Y ) ) )
Assertion
Ref Expression
lcfrlem30  |-  ( ph  ->  C  e.  (LFnl `  U ) )
Distinct variable groups:    v, k, w, x,  ._|_    .+ , k, v, w, x    R, k, v, x    S, k    .x. , k, v, w, x   
v, V, x    k, X, v, w, x    k, Y, v, w, x    x,  .0.
Allowed substitution hints:    ph( x, w, v, k)    A( x, w, v, k)    B( x, w, v, k)    C( x, w, v, k)    D( x, w, v, k)    Q( x, w, v, k)    R( w)    S( x, w, v)    U( x, w, v, k)    F( x, w, v, k)    H( x, w, v, k)    I( x, w, v, k)    J( x, w, v, k)    K( x, w, v, k)    L( x, w, v, k)    .- ( x, w, v, k)    N( x, w, v, k)    V( w, k)    W( x, w, v, k)    .0. ( w, v, k)

Proof of Theorem lcfrlem30
StepHypRef Expression
1 lcfrlem30.c . 2  |-  C  =  ( ( J `  X )  .-  (
( ( F `  ( ( J `  Y ) `  I
) ) ( .r
`  S ) ( ( J `  X
) `  I )
) ( .s `  D ) ( J `
 Y ) ) )
2 eqid 2438 . . 3  |-  (LFnl `  U )  =  (LFnl `  U )
3 lcfrlem25.d . . 3  |-  D  =  (LDual `  U )
4 lcfrlem30.m . . 3  |-  .-  =  ( -g `  D )
5 lcfrlem17.h . . . 4  |-  H  =  ( LHyp `  K
)
6 lcfrlem17.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
7 lcfrlem17.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
85, 6, 7dvhlmod 31910 . . 3  |-  ( ph  ->  U  e.  LMod )
9 lcfrlem17.o . . . 4  |-  ._|_  =  ( ( ocH `  K
) `  W )
10 lcfrlem17.v . . . 4  |-  V  =  ( Base `  U
)
11 lcfrlem17.p . . . 4  |-  .+  =  ( +g  `  U )
12 lcfrlem24.t . . . 4  |-  .x.  =  ( .s `  U )
13 lcfrlem24.s . . . 4  |-  S  =  (Scalar `  U )
14 lcfrlem24.r . . . 4  |-  R  =  ( Base `  S
)
15 lcfrlem17.z . . . 4  |-  .0.  =  ( 0g `  U )
16 lcfrlem24.l . . . 4  |-  L  =  (LKer `  U )
17 eqid 2438 . . . 4  |-  ( 0g
`  D )  =  ( 0g `  D
)
18 eqid 2438 . . . 4  |-  { f  e.  (LFnl `  U
)  |  (  ._|_  `  (  ._|_  `  ( L `
 f ) ) )  =  ( L `
 f ) }  =  { f  e.  (LFnl `  U )  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
19 lcfrlem24.j . . . 4  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
20 lcfrlem17.x . . . 4  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
215, 9, 6, 10, 11, 12, 13, 14, 15, 2, 16, 3, 17, 18, 19, 7, 20lcfrlem10 32352 . . 3  |-  ( ph  ->  ( J `  X
)  e.  (LFnl `  U ) )
22 eqid 2438 . . . 4  |-  ( .s
`  D )  =  ( .s `  D
)
23 lcfrlem17.n . . . . 5  |-  N  =  ( LSpan `  U )
24 lcfrlem17.a . . . . 5  |-  A  =  (LSAtoms `  U )
25 lcfrlem17.y . . . . 5  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
26 lcfrlem17.ne . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
27 lcfrlem22.b . . . . 5  |-  B  =  ( ( N `  { X ,  Y }
)  i^i  (  ._|_  `  { ( X  .+  Y ) } ) )
28 lcfrlem24.q . . . . 5  |-  Q  =  ( 0g `  S
)
29 lcfrlem24.ib . . . . 5  |-  ( ph  ->  I  e.  B )
30 lcfrlem28.jn . . . . 5  |-  ( ph  ->  ( ( J `  Y ) `  I
)  =/=  Q )
31 lcfrlem29.i . . . . 5  |-  F  =  ( invr `  S
)
325, 9, 6, 10, 11, 15, 23, 24, 7, 20, 25, 26, 27, 12, 13, 28, 14, 19, 29, 16, 3, 30, 31lcfrlem29 32371 . . . 4  |-  ( ph  ->  ( ( F `  ( ( J `  Y ) `  I
) ) ( .r
`  S ) ( ( J `  X
) `  I )
)  e.  R )
335, 9, 6, 10, 11, 12, 13, 14, 15, 2, 16, 3, 17, 18, 19, 7, 25lcfrlem10 32352 . . . 4  |-  ( ph  ->  ( J `  Y
)  e.  (LFnl `  U ) )
342, 13, 14, 3, 22, 8, 32, 33ldualvscl 29939 . . 3  |-  ( ph  ->  ( ( ( F `
 ( ( J `
 Y ) `  I ) ) ( .r `  S ) ( ( J `  X ) `  I
) ) ( .s
`  D ) ( J `  Y ) )  e.  (LFnl `  U ) )
352, 3, 4, 8, 21, 34ldualvsubcl 29956 . 2  |-  ( ph  ->  ( ( J `  X )  .-  (
( ( F `  ( ( J `  Y ) `  I
) ) ( .r
`  S ) ( ( J `  X
) `  I )
) ( .s `  D ) ( J `
 Y ) ) )  e.  (LFnl `  U ) )
361, 35syl5eqel 2522 1  |-  ( ph  ->  C  e.  (LFnl `  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   E.wrex 2708   {crab 2711    \ cdif 3319    i^i cin 3321   {csn 3816   {cpr 3817    e. cmpt 4268   ` cfv 5456  (class class class)co 6083   iota_crio 6544   Basecbs 13471   +g cplusg 13531   .rcmulr 13532  Scalarcsca 13534   .scvsca 13535   0gc0g 13725   -gcsg 14690   invrcinvr 15778   LSpanclspn 16049  LSAtomsclsa 29774  LFnlclfn 29857  LKerclk 29885  LDualcld 29923   HLchlt 30150   LHypclh 30783   DVecHcdvh 31878   ocHcoch 32147
This theorem is referenced by:  lcfrlem35  32377  lcfrlem36  32378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-fal 1330  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-tpos 6481  df-undef 6545  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-map 7022  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-n0 10224  df-z 10285  df-uz 10491  df-fz 11046  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-sca 13547  df-vsca 13548  df-0g 13729  df-mre 13813  df-mrc 13814  df-acs 13816  df-poset 14405  df-plt 14417  df-lub 14433  df-glb 14434  df-join 14435  df-meet 14436  df-p0 14470  df-p1 14471  df-lat 14477  df-clat 14539  df-mnd 14692  df-submnd 14741  df-grp 14814  df-minusg 14815  df-sbg 14816  df-subg 14943  df-cntz 15118  df-oppg 15144  df-lsm 15272  df-cmn 15416  df-abl 15417  df-mgp 15651  df-rng 15665  df-ur 15667  df-oppr 15730  df-dvdsr 15748  df-unit 15749  df-invr 15779  df-dvr 15790  df-drng 15839  df-lmod 15954  df-lss 16011  df-lsp 16050  df-lvec 16177  df-lsatoms 29776  df-lshyp 29777  df-lcv 29819  df-lfl 29858  df-ldual 29924  df-oposet 29976  df-ol 29978  df-oml 29979  df-covers 30066  df-ats 30067  df-atl 30098  df-cvlat 30122  df-hlat 30151  df-llines 30297  df-lplanes 30298  df-lvols 30299  df-lines 30300  df-psubsp 30302  df-pmap 30303  df-padd 30595  df-lhyp 30787  df-laut 30788  df-ldil 30903  df-ltrn 30904  df-trl 30958  df-tgrp 31542  df-tendo 31554  df-edring 31556  df-dveca 31802  df-disoa 31829  df-dvech 31879  df-dib 31939  df-dic 31973  df-dih 32029  df-doch 32148  df-djh 32195
  Copyright terms: Public domain W3C validator