Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem6 Unicode version

Theorem lcfrlem6 31806
Description: Lemma for lcfr 31844. Closure of vector sum with colinear vectors. TODO: Move down  N definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem6.h  |-  H  =  ( LHyp `  K
)
lcfrlem6.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcfrlem6.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcfrlem6.p  |-  .+  =  ( +g  `  U )
lcfrlem6.n  |-  N  =  ( LSpan `  U )
lcfrlem6.l  |-  L  =  (LKer `  U )
lcfrlem6.d  |-  D  =  (LDual `  U )
lcfrlem6.q  |-  Q  =  ( LSubSp `  D )
lcfrlem6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcfrlem6.g  |-  ( ph  ->  G  e.  Q )
lcfrlem6.e  |-  E  = 
U_ g  e.  G  (  ._|_  `  ( L `  g ) )
lcfrlem6.x  |-  ( ph  ->  X  e.  E )
lcfrlem6.y  |-  ( ph  ->  Y  e.  E )
lcfrlem6.en  |-  ( ph  ->  ( N `  { X } )  =  ( N `  { Y } ) )
Assertion
Ref Expression
lcfrlem6  |-  ( ph  ->  ( X  .+  Y
)  e.  E )
Distinct variable groups:    .+ , g    U, g    g, X    g, Y    ph, g
Allowed substitution hints:    D( g)    Q( g)    E( g)    G( g)    H( g)    K( g)    L( g)    N( g)    ._|_ ( g)    W( g)

Proof of Theorem lcfrlem6
StepHypRef Expression
1 lcfrlem6.x . . . . . 6  |-  ( ph  ->  X  e.  E )
2 lcfrlem6.e . . . . . 6  |-  E  = 
U_ g  e.  G  (  ._|_  `  ( L `  g ) )
31, 2syl6eleq 2448 . . . . 5  |-  ( ph  ->  X  e.  U_ g  e.  G  (  ._|_  `  ( L `  g
) ) )
4 eliun 3990 . . . . 5  |-  ( X  e.  U_ g  e.  G  (  ._|_  `  ( L `  g )
)  <->  E. g  e.  G  X  e.  (  ._|_  `  ( L `  g
) ) )
53, 4sylib 188 . . . 4  |-  ( ph  ->  E. g  e.  G  X  e.  (  ._|_  `  ( L `  g
) ) )
6 lcfrlem6.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
7 lcfrlem6.u . . . . . . . . . 10  |-  U  =  ( ( DVecH `  K
) `  W )
8 lcfrlem6.k . . . . . . . . . 10  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
96, 7, 8dvhlmod 31369 . . . . . . . . 9  |-  ( ph  ->  U  e.  LMod )
109adantr 451 . . . . . . . 8  |-  ( (
ph  /\  g  e.  G )  ->  U  e.  LMod )
1110adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  G )  /\  X  e.  (  ._|_  `  ( L `  g )
) )  ->  U  e.  LMod )
128adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  G )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 eqid 2358 . . . . . . . . . 10  |-  ( Base `  U )  =  (
Base `  U )
14 eqid 2358 . . . . . . . . . 10  |-  (LFnl `  U )  =  (LFnl `  U )
15 lcfrlem6.l . . . . . . . . . 10  |-  L  =  (LKer `  U )
16 lcfrlem6.g . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  Q )
17 eqid 2358 . . . . . . . . . . . . 13  |-  ( Base `  D )  =  (
Base `  D )
18 lcfrlem6.q . . . . . . . . . . . . 13  |-  Q  =  ( LSubSp `  D )
1917, 18lssel 15794 . . . . . . . . . . . 12  |-  ( ( G  e.  Q  /\  g  e.  G )  ->  g  e.  ( Base `  D ) )
2016, 19sylan 457 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  G )  ->  g  e.  ( Base `  D
) )
21 lcfrlem6.d . . . . . . . . . . . . 13  |-  D  =  (LDual `  U )
2214, 21, 17, 9ldualvbase 29385 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  D
)  =  (LFnl `  U ) )
2322adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  G )  ->  ( Base `  D )  =  (LFnl `  U )
)
2420, 23eleqtrd 2434 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  G )  ->  g  e.  (LFnl `  U )
)
2513, 14, 15, 10, 24lkrssv 29355 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  G )  ->  ( L `  g )  C_  ( Base `  U
) )
26 eqid 2358 . . . . . . . . . 10  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
27 lcfrlem6.o . . . . . . . . . 10  |-  ._|_  =  ( ( ocH `  K
) `  W )
286, 7, 13, 26, 27dochlss 31613 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( L `  g )  C_  ( Base `  U ) )  ->  (  ._|_  `  ( L `  g )
)  e.  ( LSubSp `  U ) )
2912, 25, 28syl2anc 642 . . . . . . . 8  |-  ( (
ph  /\  g  e.  G )  ->  (  ._|_  `  ( L `  g ) )  e.  ( LSubSp `  U )
)
3029adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  G )  /\  X  e.  (  ._|_  `  ( L `  g )
) )  ->  (  ._|_  `  ( L `  g ) )  e.  ( LSubSp `  U )
)
31 simpr 447 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  G )  /\  X  e.  (  ._|_  `  ( L `  g )
) )  ->  X  e.  (  ._|_  `  ( L `  g )
) )
32 lcfrlem6.en . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { X } )  =  ( N `  { Y } ) )
3332adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  g  e.  G )  ->  ( N `  { X } )  =  ( N `  { Y } ) )
3433adantr 451 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  G )  /\  ( N `  { X } )  C_  (  ._|_  `  ( L `  g ) ) )  ->  ( N `  { X } )  =  ( N `  { Y } ) )
35 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  G )  /\  ( N `  { X } )  C_  (  ._|_  `  ( L `  g ) ) )  ->  ( N `  { X } )  C_  (  ._|_  `  ( L `  g ) ) )
3634, 35eqsstr3d 3289 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  G )  /\  ( N `  { X } )  C_  (  ._|_  `  ( L `  g ) ) )  ->  ( N `  { Y } )  C_  (  ._|_  `  ( L `  g ) ) )
3736ex 423 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  G )  ->  (
( N `  { X } )  C_  (  ._|_  `  ( L `  g ) )  -> 
( N `  { Y } )  C_  (  ._|_  `  ( L `  g ) ) ) )
38 lcfrlem6.n . . . . . . . . . 10  |-  N  =  ( LSpan `  U )
396, 27, 7, 13, 15, 21, 18, 2, 8, 16, 1lcfrlem4 31804 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  ( Base `  U ) )
4039adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  G )  ->  X  e.  ( Base `  U
) )
4113, 26, 38, 10, 29, 40lspsnel5 15851 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  G )  ->  ( X  e.  (  ._|_  `  ( L `  g
) )  <->  ( N `  { X } ) 
C_  (  ._|_  `  ( L `  g )
) ) )
42 lcfrlem6.y . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  E )
436, 27, 7, 13, 15, 21, 18, 2, 8, 16, 42lcfrlem4 31804 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  ( Base `  U ) )
4443adantr 451 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  G )  ->  Y  e.  ( Base `  U
) )
4513, 26, 38, 10, 29, 44lspsnel5 15851 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  G )  ->  ( Y  e.  (  ._|_  `  ( L `  g
) )  <->  ( N `  { Y } ) 
C_  (  ._|_  `  ( L `  g )
) ) )
4637, 41, 453imtr4d 259 . . . . . . . 8  |-  ( (
ph  /\  g  e.  G )  ->  ( X  e.  (  ._|_  `  ( L `  g
) )  ->  Y  e.  (  ._|_  `  ( L `  g )
) ) )
4746imp 418 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  G )  /\  X  e.  (  ._|_  `  ( L `  g )
) )  ->  Y  e.  (  ._|_  `  ( L `  g )
) )
48 lcfrlem6.p . . . . . . . 8  |-  .+  =  ( +g  `  U )
4948, 26lssvacl 15810 . . . . . . 7  |-  ( ( ( U  e.  LMod  /\  (  ._|_  `  ( L `
 g ) )  e.  ( LSubSp `  U
) )  /\  ( X  e.  (  ._|_  `  ( L `  g
) )  /\  Y  e.  (  ._|_  `  ( L `  g )
) ) )  -> 
( X  .+  Y
)  e.  (  ._|_  `  ( L `  g
) ) )
5011, 30, 31, 47, 49syl22anc 1183 . . . . . 6  |-  ( ( ( ph  /\  g  e.  G )  /\  X  e.  (  ._|_  `  ( L `  g )
) )  ->  ( X  .+  Y )  e.  (  ._|_  `  ( L `
 g ) ) )
5150ex 423 . . . . 5  |-  ( (
ph  /\  g  e.  G )  ->  ( X  e.  (  ._|_  `  ( L `  g
) )  ->  ( X  .+  Y )  e.  (  ._|_  `  ( L `
 g ) ) ) )
5251reximdva 2731 . . . 4  |-  ( ph  ->  ( E. g  e.  G  X  e.  ( 
._|_  `  ( L `  g ) )  ->  E. g  e.  G  ( X  .+  Y )  e.  (  ._|_  `  ( L `  g )
) ) )
535, 52mpd 14 . . 3  |-  ( ph  ->  E. g  e.  G  ( X  .+  Y )  e.  (  ._|_  `  ( L `  g )
) )
54 eliun 3990 . . 3  |-  ( ( X  .+  Y )  e.  U_ g  e.  G  (  ._|_  `  ( L `  g )
)  <->  E. g  e.  G  ( X  .+  Y )  e.  (  ._|_  `  ( L `  g )
) )
5553, 54sylibr 203 . 2  |-  ( ph  ->  ( X  .+  Y
)  e.  U_ g  e.  G  (  ._|_  `  ( L `  g
) ) )
5655, 2syl6eleqr 2449 1  |-  ( ph  ->  ( X  .+  Y
)  e.  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   E.wrex 2620    C_ wss 3228   {csn 3716   U_ciun 3986   ` cfv 5337  (class class class)co 5945   Basecbs 13245   +g cplusg 13305   LModclmod 15726   LSubSpclss 15788   LSpanclspn 15827  LFnlclfn 29316  LKerclk 29344  LDualcld 29382   HLchlt 29609   LHypclh 30242   DVecHcdvh 31337   ocHcoch 31606
This theorem is referenced by:  lcfrlem41  31842
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-fal 1320  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-iin 3989  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-of 6165  df-1st 6209  df-2nd 6210  df-tpos 6321  df-undef 6385  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-oadd 6570  df-er 6747  df-map 6862  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-2 9894  df-3 9895  df-4 9896  df-5 9897  df-6 9898  df-n0 10058  df-z 10117  df-uz 10323  df-fz 10875  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-sets 13251  df-ress 13252  df-plusg 13318  df-mulr 13319  df-sca 13321  df-vsca 13322  df-0g 13503  df-poset 14179  df-plt 14191  df-lub 14207  df-glb 14208  df-join 14209  df-meet 14210  df-p0 14244  df-p1 14245  df-lat 14251  df-clat 14313  df-mnd 14466  df-submnd 14515  df-grp 14588  df-minusg 14589  df-sbg 14590  df-subg 14717  df-cntz 14892  df-lsm 15046  df-cmn 15190  df-abl 15191  df-mgp 15425  df-rng 15439  df-ur 15441  df-oppr 15504  df-dvdsr 15522  df-unit 15523  df-invr 15553  df-dvr 15564  df-drng 15613  df-lmod 15728  df-lss 15789  df-lsp 15828  df-lvec 15955  df-lfl 29317  df-lkr 29345  df-ldual 29383  df-oposet 29435  df-ol 29437  df-oml 29438  df-covers 29525  df-ats 29526  df-atl 29557  df-cvlat 29581  df-hlat 29610  df-llines 29756  df-lplanes 29757  df-lvols 29758  df-lines 29759  df-psubsp 29761  df-pmap 29762  df-padd 30054  df-lhyp 30246  df-laut 30247  df-ldil 30362  df-ltrn 30363  df-trl 30417  df-tendo 31013  df-edring 31015  df-disoa 31288  df-dvech 31338  df-dib 31398  df-dic 31432  df-dih 31488  df-doch 31607
  Copyright terms: Public domain W3C validator