Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem8 Structured version   Unicode version

Theorem lcfrlem8 32284
Description: Lemma for lcf1o 32286 and lcfr 32320. (Contributed by NM, 21-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h  |-  H  =  ( LHyp `  K
)
lcf1o.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcf1o.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcf1o.v  |-  V  =  ( Base `  U
)
lcf1o.a  |-  .+  =  ( +g  `  U )
lcf1o.t  |-  .x.  =  ( .s `  U )
lcf1o.s  |-  S  =  (Scalar `  U )
lcf1o.r  |-  R  =  ( Base `  S
)
lcf1o.z  |-  .0.  =  ( 0g `  U )
lcf1o.f  |-  F  =  (LFnl `  U )
lcf1o.l  |-  L  =  (LKer `  U )
lcf1o.d  |-  D  =  (LDual `  U )
lcf1o.q  |-  Q  =  ( 0g `  D
)
lcf1o.c  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
lcf1o.j  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
lcflo.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcfrlem8.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
Assertion
Ref Expression
lcfrlem8  |-  ( ph  ->  ( J `  X
)  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) ) )
Distinct variable groups:    x, w,  ._|_    x,  .0.    x, v, V    x,  .x.    v, k, w, x, X    x,  .+    x, R
Allowed substitution hints:    ph( x, w, v, f, k)    C( x, w, v, f, k)    D( x, w, v, f, k)    .+ ( w, v, f, k)    Q( x, w, v, f, k)    R( w, v, f, k)    S( x, w, v, f, k)    .x. ( w, v, f, k)    U( x, w, v, f, k)    F( x, w, v, f, k)    H( x, w, v, f, k)    J( x, w, v, f, k)    K( x, w, v, f, k)    L( x, w, v, f, k)    ._|_ ( v, f, k)    V( w, f, k)    W( x, w, v, f, k)    X( f)    .0. ( w, v, f, k)

Proof of Theorem lcfrlem8
StepHypRef Expression
1 lcfrlem8.x . 2  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
2 sneq 3817 . . . . . . 7  |-  ( x  =  X  ->  { x }  =  { X } )
32fveq2d 5724 . . . . . 6  |-  ( x  =  X  ->  (  ._|_  `  { x }
)  =  (  ._|_  `  { X } ) )
4 oveq2 6081 . . . . . . . 8  |-  ( x  =  X  ->  (
k  .x.  x )  =  ( k  .x.  X ) )
54oveq2d 6089 . . . . . . 7  |-  ( x  =  X  ->  (
w  .+  ( k  .x.  x ) )  =  ( w  .+  (
k  .x.  X )
) )
65eqeq2d 2446 . . . . . 6  |-  ( x  =  X  ->  (
v  =  ( w 
.+  ( k  .x.  x ) )  <->  v  =  ( w  .+  ( k 
.x.  X ) ) ) )
73, 6rexeqbidv 2909 . . . . 5  |-  ( x  =  X  ->  ( E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) )  <->  E. w  e.  (  ._|_  `  { X }
) v  =  ( w  .+  ( k 
.x.  X ) ) ) )
87riotabidv 6543 . . . 4  |-  ( x  =  X  ->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w 
.+  ( k  .x.  x ) ) )  =  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) )
98mpteq2dv 4288 . . 3  |-  ( x  =  X  ->  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { x }
) v  =  ( w  .+  ( k 
.x.  x ) ) ) )  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { X }
) v  =  ( w  .+  ( k 
.x.  X ) ) ) ) )
10 lcf1o.j . . 3  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
11 lcf1o.v . . . . 5  |-  V  =  ( Base `  U
)
12 fvex 5734 . . . . 5  |-  ( Base `  U )  e.  _V
1311, 12eqeltri 2505 . . . 4  |-  V  e. 
_V
1413mptex 5958 . . 3  |-  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) )  e. 
_V
159, 10, 14fvmpt 5798 . 2  |-  ( X  e.  ( V  \  {  .0.  } )  -> 
( J `  X
)  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) ) )
161, 15syl 16 1  |-  ( ph  ->  ( J `  X
)  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { X } ) v  =  ( w  .+  (
k  .x.  X )
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698   {crab 2701   _Vcvv 2948    \ cdif 3309   {csn 3806    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   iota_crio 6534   Basecbs 13461   +g cplusg 13521  Scalarcsca 13524   .scvsca 13525   0gc0g 13715  LFnlclfn 29792  LKerclk 29820  LDualcld 29858   HLchlt 30085   LHypclh 30718   DVecHcdvh 31813   ocHcoch 32082
This theorem is referenced by:  lcfrlem9  32285  lcfrlem10  32287  lcfrlem11  32288
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-riota 6541
  Copyright terms: Public domain W3C validator