Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem9 Unicode version

Theorem lcfrlem9 32362
Description: Lemma for lcf1o 32363. (This part has undesirable $d's on  J and  ph that we remove in lcf1o 32363.) TODO: ugly proof; maybe have better subtheorems or abbreviate some  iota_
k expansions with  J `  z? TODO: Some redundant $d's? (Contributed by NM, 22-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h  |-  H  =  ( LHyp `  K
)
lcf1o.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcf1o.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcf1o.v  |-  V  =  ( Base `  U
)
lcf1o.a  |-  .+  =  ( +g  `  U )
lcf1o.t  |-  .x.  =  ( .s `  U )
lcf1o.s  |-  S  =  (Scalar `  U )
lcf1o.r  |-  R  =  ( Base `  S
)
lcf1o.z  |-  .0.  =  ( 0g `  U )
lcf1o.f  |-  F  =  (LFnl `  U )
lcf1o.l  |-  L  =  (LKer `  U )
lcf1o.d  |-  D  =  (LDual `  U )
lcf1o.q  |-  Q  =  ( 0g `  D
)
lcf1o.c  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
lcf1o.j  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
lcflo.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
Assertion
Ref Expression
lcfrlem9  |-  ( ph  ->  J : ( V 
\  {  .0.  }
)
-1-1-onto-> ( C  \  { Q } ) )
Distinct variable groups:    x, w,  ._|_    x,  .0. , v    v, V, x    x,  .x.    v, k, w, x,  .+    x, R    f,
k, v, w, x, 
.+    k, J, v, w, x    C, k, v, w, x    f, F    f, L, k, v, w, x    ._|_ , f, k, v    Q, k, v, w, x    R, f, k, v, w    S, k, v, w, x    .x. , f,
k, v, w    U, k, w, x    f, V, k, w    .0. , k,
v, w    ph, k, v, w, x
Allowed substitution hints:    ph( f)    C( f)    D( x, w, v, f, k)    Q( f)    S( f)    U( v, f)    F( x, w, v, k)    H( x, w, v, f, k)    J( f)    K( x, w, v, f, k)    W( x, w, v, f, k)    .0. ( f)

Proof of Theorem lcfrlem9
Dummy variables  y 
g  t  u  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcf1o.v . . . . . 6  |-  V  =  ( Base `  U
)
2 fvex 5555 . . . . . 6  |-  ( Base `  U )  e.  _V
31, 2eqeltri 2366 . . . . 5  |-  V  e. 
_V
43mptex 5762 . . . 4  |-  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) )  e.  _V
5 lcf1o.j . . . 4  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
64, 5fnmpti 5388 . . 3  |-  J  Fn  ( V  \  {  .0.  } )
76a1i 10 . 2  |-  ( ph  ->  J  Fn  ( V 
\  {  .0.  }
) )
8 fvelrnb 5586 . . . . 5  |-  ( J  Fn  ( V  \  {  .0.  } )  -> 
( g  e.  ran  J  <->  E. z  e.  ( V  \  {  .0.  }
) ( J `  z )  =  g ) )
97, 8syl 15 . . . 4  |-  ( ph  ->  ( g  e.  ran  J  <->  E. z  e.  ( V  \  {  .0.  }
) ( J `  z )  =  g ) )
10 lcf1o.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
11 lcf1o.o . . . . . . . . 9  |-  ._|_  =  ( ( ocH `  K
) `  W )
12 lcf1o.u . . . . . . . . 9  |-  U  =  ( ( DVecH `  K
) `  W )
13 lcf1o.a . . . . . . . . 9  |-  .+  =  ( +g  `  U )
14 lcf1o.t . . . . . . . . 9  |-  .x.  =  ( .s `  U )
15 lcf1o.s . . . . . . . . 9  |-  S  =  (Scalar `  U )
16 lcf1o.r . . . . . . . . 9  |-  R  =  ( Base `  S
)
17 lcf1o.z . . . . . . . . 9  |-  .0.  =  ( 0g `  U )
18 lcf1o.f . . . . . . . . 9  |-  F  =  (LFnl `  U )
19 lcf1o.l . . . . . . . . 9  |-  L  =  (LKer `  U )
20 lcf1o.d . . . . . . . . 9  |-  D  =  (LDual `  U )
21 lcf1o.q . . . . . . . . 9  |-  Q  =  ( 0g `  D
)
22 lcf1o.c . . . . . . . . 9  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
23 lcflo.k . . . . . . . . . 10  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
2423adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
25 simpr 447 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  z  e.  ( V  \  {  .0.  } ) )
2610, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 24, 25lcfrlem8 32361 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( J `  z )  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) ) )
27 eqid 2296 . . . . . . . . . . . 12  |-  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )
28 sneq 3664 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  { y }  =  { z } )
2928fveq2d 5545 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (  ._|_  `  { y } )  =  (  ._|_  `  { z } ) )
30 oveq2 5882 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  (
k  .x.  y )  =  ( k  .x.  z ) )
3130oveq2d 5890 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
w  .+  ( k  .x.  y ) )  =  ( w  .+  (
k  .x.  z )
) )
3231eqeq2d 2307 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
v  =  ( w 
.+  ( k  .x.  y ) )  <->  v  =  ( w  .+  ( k 
.x.  z ) ) ) )
3329, 32rexeqbidv 2762 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  ( E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) )  <->  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )
3433riotabidv 6322 . . . . . . . . . . . . . . 15  |-  ( y  =  z  ->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w 
.+  ( k  .x.  y ) ) )  =  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )
3534mpteq2dv 4123 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) )  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
3635eqeq2d 2307 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  (
( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) )  <->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) ) ) )
3736rspcev 2897 . . . . . . . . . . . 12  |-  ( ( z  e.  ( V 
\  {  .0.  }
)  /\  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) ) )  ->  E. y  e.  ( V  \  {  .0.  } ) ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) ) )
3825, 27, 37sylancl 643 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  E. y  e.  ( V  \  {  .0.  } ) ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) )
3938olcd 382 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( L `  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )  =  V  \/  E. y  e.  ( V  \  {  .0.  } ) ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) )
4010, 11, 12, 1, 17, 13, 14, 18, 15, 16, 27, 24, 25dochflcl 32287 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  F
)
4110, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 22, 24, 40lcfl6 32312 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  C  <->  ( ( L `  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )  =  V  \/  E. y  e.  ( V  \  {  .0.  } ) ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) ) )
4239, 41mpbird 223 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  C
)
4310, 11, 12, 1, 17, 13, 14, 19, 15, 16, 27, 24, 25dochsnkr2cl 32286 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  z  e.  ( (  ._|_  `  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) ) ) )  \  {  .0.  } ) )
4410, 11, 12, 1, 17, 18, 19, 24, 40, 43dochsnkrlem3 32283 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (  ._|_  `  (  ._|_  `  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) ) ) ) )  =  ( L `  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
4510, 11, 12, 1, 17, 18, 19, 24, 40, 43dochsnkrlem1 32281 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (  ._|_  `  (  ._|_  `  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) ) ) ) )  =/= 
V )
4644, 45eqnetrrd 2479 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) ) )  =/=  V )
4710, 12, 23dvhlmod 31922 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  LMod )
4847adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  U  e.  LMod )
491, 18, 19, 20, 21, 48, 40lkr0f2 29973 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( L `  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )  =  V  <->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )  =  Q ) )
5049necon3bid 2494 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( L `  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )  =/= 
V  <->  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )  =/= 
Q ) )
5146, 50mpbid 201 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  =/=  Q
)
52 eldifsn 3762 . . . . . . . . 9  |-  ( ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  ( C  \  { Q } )  <->  ( (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  C  /\  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  =/=  Q
) )
5342, 51, 52sylanbrc 645 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  ( C  \  { Q } ) )
5426, 53eqeltrd 2370 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( J `  z )  e.  ( C  \  { Q } ) )
55 eleq1 2356 . . . . . . 7  |-  ( ( J `  z )  =  g  ->  (
( J `  z
)  e.  ( C 
\  { Q }
)  <->  g  e.  ( C  \  { Q } ) ) )
5654, 55syl5ibcom 211 . . . . . 6  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( J `  z
)  =  g  -> 
g  e.  ( C 
\  { Q }
) ) )
5756rexlimdva 2680 . . . . 5  |-  ( ph  ->  ( E. z  e.  ( V  \  {  .0.  } ) ( J `
 z )  =  g  ->  g  e.  ( C  \  { Q } ) ) )
58 eldifsn 3762 . . . . . . . 8  |-  ( g  e.  ( C  \  { Q } )  <->  ( g  e.  C  /\  g  =/=  Q ) )
59 simprl 732 . . . . . . . . 9  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
g  e.  C )
6047adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  g  e.  C )  ->  U  e.  LMod )
6122lcfl1lem 32303 . . . . . . . . . . . . . . . 16  |-  ( g  e.  C  <->  ( g  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  g )
) )  =  ( L `  g ) ) )
6261simplbi 446 . . . . . . . . . . . . . . 15  |-  ( g  e.  C  ->  g  e.  F )
6362adantl 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  g  e.  C )  ->  g  e.  F )
641, 18, 19, 20, 21, 60, 63lkr0f2 29973 . . . . . . . . . . . . 13  |-  ( (
ph  /\  g  e.  C )  ->  (
( L `  g
)  =  V  <->  g  =  Q ) )
6564necon3bid 2494 . . . . . . . . . . . 12  |-  ( (
ph  /\  g  e.  C )  ->  (
( L `  g
)  =/=  V  <->  g  =/=  Q ) )
6665biimprd 214 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  C )  ->  (
g  =/=  Q  -> 
( L `  g
)  =/=  V ) )
6766impr 602 . . . . . . . . . 10  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
( L `  g
)  =/=  V )
6867neneqd 2475 . . . . . . . . 9  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  ->  -.  ( L `  g
)  =  V )
6923adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
7062adantr 451 . . . . . . . . . . . . . 14  |-  ( ( g  e.  C  /\  g  =/=  Q )  -> 
g  e.  F )
7170adantl 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
g  e.  F )
7210, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 22, 69, 71lcfl6 32312 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
( g  e.  C  <->  ( ( L `  g
)  =  V  \/  E. z  e.  ( V 
\  {  .0.  }
) g  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) ) )
7372biimpa 470 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
g  e.  C  /\  g  =/=  Q ) )  /\  g  e.  C
)  ->  ( ( L `  g )  =  V  \/  E. z  e.  ( V  \  {  .0.  } ) g  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
7473ord 366 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
g  e.  C  /\  g  =/=  Q ) )  /\  g  e.  C
)  ->  ( -.  ( L `  g )  =  V  ->  E. z  e.  ( V  \  {  .0.  } ) g  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
75743impia 1148 . . . . . . . . 9  |-  ( ( ( ph  /\  (
g  e.  C  /\  g  =/=  Q ) )  /\  g  e.  C  /\  -.  ( L `  g )  =  V )  ->  E. z  e.  ( V  \  {  .0.  } ) g  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
7659, 68, 75mpd3an23 1279 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  ->  E. z  e.  ( V  \  {  .0.  }
) g  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
7758, 76sylan2b 461 . . . . . . 7  |-  ( (
ph  /\  g  e.  ( C  \  { Q } ) )  ->  E. z  e.  ( V  \  {  .0.  }
) g  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
78 eqcom 2298 . . . . . . . . 9  |-  ( ( J `  z )  =  g  <->  g  =  ( J `  z ) )
7923ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
80 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  z  e.  ( V  \  {  .0.  } ) )
8110, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 79, 80lcfrlem8 32361 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( J `  z )  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
8281eqeq2d 2307 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( g  =  ( J `  z )  <->  g  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
8378, 82syl5bb 248 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( ( J `  z )  =  g  <->  g  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
8483rexbidva 2573 . . . . . . 7  |-  ( (
ph  /\  g  e.  ( C  \  { Q } ) )  -> 
( E. z  e.  ( V  \  {  .0.  } ) ( J `
 z )  =  g  <->  E. z  e.  ( V  \  {  .0.  } ) g  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
8577, 84mpbird 223 . . . . . 6  |-  ( (
ph  /\  g  e.  ( C  \  { Q } ) )  ->  E. z  e.  ( V  \  {  .0.  }
) ( J `  z )  =  g )
8685ex 423 . . . . 5  |-  ( ph  ->  ( g  e.  ( C  \  { Q } )  ->  E. z  e.  ( V  \  {  .0.  } ) ( J `
 z )  =  g ) )
8757, 86impbid 183 . . . 4  |-  ( ph  ->  ( E. z  e.  ( V  \  {  .0.  } ) ( J `
 z )  =  g  <->  g  e.  ( C  \  { Q } ) ) )
889, 87bitrd 244 . . 3  |-  ( ph  ->  ( g  e.  ran  J  <-> 
g  e.  ( C 
\  { Q }
) ) )
8988eqrdv 2294 . 2  |-  ( ph  ->  ran  J  =  ( C  \  { Q } ) )
9023ad2antrr 706 . . . . 5  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
91 eqid 2296 . . . . 5  |-  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
t } ) v  =  ( w  .+  ( k  .x.  t
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { t } ) v  =  ( w  .+  (
k  .x.  t )
) ) )
92 eqid 2296 . . . . 5  |-  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
u } ) v  =  ( w  .+  ( k  .x.  u
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { u } ) v  =  ( w  .+  (
k  .x.  u )
) ) )
93 simplrl 736 . . . . 5  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
t  e.  ( V 
\  {  .0.  }
) )
94 simplrr 737 . . . . 5  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  ->  u  e.  ( V  \  {  .0.  } ) )
95 simpr 447 . . . . . 6  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( J `  t
)  =  ( J `
 u ) )
9610, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 90, 93lcfrlem8 32361 . . . . . 6  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( J `  t
)  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
t } ) v  =  ( w  .+  ( k  .x.  t
) ) ) ) )
9710, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 90, 94lcfrlem8 32361 . . . . . 6  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( J `  u
)  =  ( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  {
u } ) v  =  ( w  .+  ( k  .x.  u
) ) ) ) )
9895, 96, 973eqtr3d 2336 . . . . 5  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( v  e.  V  |->  ( iota_ k  e.  R E. w  e.  (  ._|_  `  { t } ) v  =  ( w  .+  ( k 
.x.  t ) ) ) )  =  ( v  e.  V  |->  (
iota_ k  e.  R E. w  e.  (  ._|_  `  { u }
) v  =  ( w  .+  ( k 
.x.  u ) ) ) ) )
9910, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 90, 91, 92, 93, 94, 98lcfl7lem 32311 . . . 4  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
t  =  u )
10099ex 423 . . 3  |-  ( (
ph  /\  ( t  e.  ( V  \  {  .0.  } )  /\  u  e.  ( V  \  {  .0.  } ) ) )  ->  ( ( J `
 t )  =  ( J `  u
)  ->  t  =  u ) )
101100ralrimivva 2648 . 2  |-  ( ph  ->  A. t  e.  ( V  \  {  .0.  } ) A. u  e.  ( V  \  {  .0.  } ) ( ( J `  t )  =  ( J `  u )  ->  t  =  u ) )
102 dff1o6 5807 . 2  |-  ( J : ( V  \  {  .0.  } ) -1-1-onto-> ( C 
\  { Q }
)  <->  ( J  Fn  ( V  \  {  .0.  } )  /\  ran  J  =  ( C  \  { Q } )  /\  A. t  e.  ( V 
\  {  .0.  }
) A. u  e.  ( V  \  {  .0.  } ) ( ( J `  t )  =  ( J `  u )  ->  t  =  u ) ) )
1037, 89, 101, 102syl3anbrc 1136 1  |-  ( ph  ->  J : ( V 
\  {  .0.  }
)
-1-1-onto-> ( C  \  { Q } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560   _Vcvv 2801    \ cdif 3162   {csn 3653    e. cmpt 4093   ran crn 4706    Fn wfn 5266   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5874   iota_crio 6313   Basecbs 13164   +g cplusg 13224  Scalarcsca 13227   .scvsca 13228   0gc0g 13416   LModclmod 15643  LFnlclfn 29869  LKerclk 29897  LDualcld 29935   HLchlt 30162   LHypclh 30795   DVecHcdvh 31890   ocHcoch 32159
This theorem is referenced by:  lcf1o  32363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-fal 1311  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-tpos 6250  df-undef 6314  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-0g 13420  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-cntz 14809  df-lsm 14963  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440  df-invr 15470  df-dvr 15481  df-drng 15530  df-lmod 15645  df-lss 15706  df-lsp 15745  df-lvec 15872  df-lsatoms 29788  df-lshyp 29789  df-lfl 29870  df-lkr 29898  df-ldual 29936  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-llines 30309  df-lplanes 30310  df-lvols 30311  df-lines 30312  df-psubsp 30314  df-pmap 30315  df-padd 30607  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970  df-tgrp 31554  df-tendo 31566  df-edring 31568  df-dveca 31814  df-disoa 31841  df-dvech 31891  df-dib 31951  df-dic 31985  df-dih 32041  df-doch 32160  df-djh 32207
  Copyright terms: Public domain W3C validator