Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcomfsup Unicode version

Theorem lcomfsup 26768
Description: A linear-combination sum is finitely supported if the coefficients are. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
lcomf.f  |-  F  =  (Scalar `  W )
lcomf.k  |-  K  =  ( Base `  F
)
lcomf.s  |-  .x.  =  ( .s `  W )
lcomf.b  |-  B  =  ( Base `  W
)
lcomf.w  |-  ( ph  ->  W  e.  LMod )
lcomf.g  |-  ( ph  ->  G : I --> K )
lcomf.h  |-  ( ph  ->  H : I --> B )
lcomf.i  |-  ( ph  ->  I  e.  V )
lcomfsup.z  |-  .0.  =  ( 0g `  W )
lcomfsup.y  |-  Y  =  ( 0g `  F
)
lcomfsup.j  |-  ( ph  ->  ( `' G "
( _V  \  { Y } ) )  e. 
Fin )
Assertion
Ref Expression
lcomfsup  |-  ( ph  ->  ( `' ( G  o F  .x.  H
) " ( _V 
\  {  .0.  }
) )  e.  Fin )

Proof of Theorem lcomfsup
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 lcomfsup.j . 2  |-  ( ph  ->  ( `' G "
( _V  \  { Y } ) )  e. 
Fin )
2 lcomf.f . . . 4  |-  F  =  (Scalar `  W )
3 lcomf.k . . . 4  |-  K  =  ( Base `  F
)
4 lcomf.s . . . 4  |-  .x.  =  ( .s `  W )
5 lcomf.b . . . 4  |-  B  =  ( Base `  W
)
6 lcomf.w . . . 4  |-  ( ph  ->  W  e.  LMod )
7 lcomf.g . . . 4  |-  ( ph  ->  G : I --> K )
8 lcomf.h . . . 4  |-  ( ph  ->  H : I --> B )
9 lcomf.i . . . 4  |-  ( ph  ->  I  e.  V )
102, 3, 4, 5, 6, 7, 8, 9lcomf 26767 . . 3  |-  ( ph  ->  ( G  o F 
.x.  H ) : I --> B )
11 eldifi 3298 . . . . 5  |-  ( x  e.  ( I  \ 
( `' G "
( _V  \  { Y } ) ) )  ->  x  e.  I
)
12 ffn 5389 . . . . . . . 8  |-  ( G : I --> K  ->  G  Fn  I )
137, 12syl 15 . . . . . . 7  |-  ( ph  ->  G  Fn  I )
1413adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  G  Fn  I )
15 ffn 5389 . . . . . . . 8  |-  ( H : I --> B  ->  H  Fn  I )
168, 15syl 15 . . . . . . 7  |-  ( ph  ->  H  Fn  I )
1716adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  H  Fn  I )
189adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  I  e.  V )
19 simpr 447 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  x  e.  I )
20 fnfvof 6090 . . . . . 6  |-  ( ( ( G  Fn  I  /\  H  Fn  I
)  /\  ( I  e.  V  /\  x  e.  I ) )  -> 
( ( G  o F  .x.  H ) `  x )  =  ( ( G `  x
)  .x.  ( H `  x ) ) )
2114, 17, 18, 19, 20syl22anc 1183 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  (
( G  o F 
.x.  H ) `  x )  =  ( ( G `  x
)  .x.  ( H `  x ) ) )
2211, 21sylan2 460 . . . 4  |-  ( (
ph  /\  x  e.  ( I  \  ( `' G " ( _V 
\  { Y }
) ) ) )  ->  ( ( G  o F  .x.  H
) `  x )  =  ( ( G `
 x )  .x.  ( H `  x ) ) )
23 ssid 3197 . . . . . . 7  |-  ( `' G " ( _V 
\  { Y }
) )  C_  ( `' G " ( _V 
\  { Y }
) )
2423a1i 10 . . . . . 6  |-  ( ph  ->  ( `' G "
( _V  \  { Y } ) )  C_  ( `' G " ( _V 
\  { Y }
) ) )
257, 24suppssr 5659 . . . . 5  |-  ( (
ph  /\  x  e.  ( I  \  ( `' G " ( _V 
\  { Y }
) ) ) )  ->  ( G `  x )  =  Y )
2625oveq1d 5873 . . . 4  |-  ( (
ph  /\  x  e.  ( I  \  ( `' G " ( _V 
\  { Y }
) ) ) )  ->  ( ( G `
 x )  .x.  ( H `  x ) )  =  ( Y 
.x.  ( H `  x ) ) )
276adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  W  e.  LMod )
28 ffvelrn 5663 . . . . . . 7  |-  ( ( H : I --> B  /\  x  e.  I )  ->  ( H `  x
)  e.  B )
298, 28sylan 457 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( H `  x )  e.  B )
30 lcomfsup.y . . . . . . 7  |-  Y  =  ( 0g `  F
)
31 lcomfsup.z . . . . . . 7  |-  .0.  =  ( 0g `  W )
325, 2, 4, 30, 31lmod0vs 15663 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( H `  x )  e.  B )  ->  ( Y  .x.  ( H `  x ) )  =  .0.  )
3327, 29, 32syl2anc 642 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( Y  .x.  ( H `  x ) )  =  .0.  )
3411, 33sylan2 460 . . . 4  |-  ( (
ph  /\  x  e.  ( I  \  ( `' G " ( _V 
\  { Y }
) ) ) )  ->  ( Y  .x.  ( H `  x ) )  =  .0.  )
3522, 26, 343eqtrd 2319 . . 3  |-  ( (
ph  /\  x  e.  ( I  \  ( `' G " ( _V 
\  { Y }
) ) ) )  ->  ( ( G  o F  .x.  H
) `  x )  =  .0.  )
3610, 35suppss 5658 . 2  |-  ( ph  ->  ( `' ( G  o F  .x.  H
) " ( _V 
\  {  .0.  }
) )  C_  ( `' G " ( _V 
\  { Y }
) ) )
37 ssfi 7083 . 2  |-  ( ( ( `' G "
( _V  \  { Y } ) )  e. 
Fin  /\  ( `' ( G  o F  .x.  H ) " ( _V  \  {  .0.  }
) )  C_  ( `' G " ( _V 
\  { Y }
) ) )  -> 
( `' ( G  o F  .x.  H
) " ( _V 
\  {  .0.  }
) )  e.  Fin )
381, 36, 37syl2anc 642 1  |-  ( ph  ->  ( `' ( G  o F  .x.  H
) " ( _V 
\  {  .0.  }
) )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    \ cdif 3149    C_ wss 3152   {csn 3640   `'ccnv 4688   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858    o Fcof 6076   Fincfn 6863   Basecbs 13148  Scalarcsca 13211   .scvsca 13212   0gc0g 13400   LModclmod 15627
This theorem is referenced by:  islindf4  27308
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-riota 6304  df-er 6660  df-en 6864  df-fin 6867  df-0g 13404  df-mnd 14367  df-grp 14489  df-rng 15340  df-lmod 15629
  Copyright terms: Public domain W3C validator