Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem5 Unicode version

Theorem lcvexchlem5 29850
Description: Lemma for lcvexch 29851. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s  |-  S  =  ( LSubSp `  W )
lcvexch.p  |-  .(+)  =  (
LSSum `  W )
lcvexch.c  |-  C  =  (  <oLL  `  W )
lcvexch.w  |-  ( ph  ->  W  e.  LMod )
lcvexch.t  |-  ( ph  ->  T  e.  S )
lcvexch.u  |-  ( ph  ->  U  e.  S )
lcvexch.g  |-  ( ph  ->  ( T  i^i  U
) C U )
Assertion
Ref Expression
lcvexchlem5  |-  ( ph  ->  T C ( T 
.(+)  U ) )

Proof of Theorem lcvexchlem5
Dummy variables  s 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvexch.s . . . 4  |-  S  =  ( LSubSp `  W )
2 lcvexch.c . . . 4  |-  C  =  (  <oLL  `  W )
3 lcvexch.w . . . 4  |-  ( ph  ->  W  e.  LMod )
4 lcvexch.t . . . . 5  |-  ( ph  ->  T  e.  S )
5 lcvexch.u . . . . 5  |-  ( ph  ->  U  e.  S )
61lssincl 15738 . . . . 5  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  ( T  i^i  U )  e.  S )
73, 4, 5, 6syl3anc 1182 . . . 4  |-  ( ph  ->  ( T  i^i  U
)  e.  S )
8 lcvexch.g . . . 4  |-  ( ph  ->  ( T  i^i  U
) C U )
91, 2, 3, 7, 5, 8lcvpss 29836 . . 3  |-  ( ph  ->  ( T  i^i  U
)  C.  U )
10 lcvexch.p . . . 4  |-  .(+)  =  (
LSSum `  W )
111, 10, 2, 3, 4, 5lcvexchlem1 29846 . . 3  |-  ( ph  ->  ( T  C.  ( T  .(+)  U )  <->  ( T  i^i  U )  C.  U
) )
129, 11mpbird 223 . 2  |-  ( ph  ->  T  C.  ( T 
.(+)  U ) )
13 simp3l 983 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  T  C_  s
)
14 ssrin 3407 . . . . . . . 8  |-  ( T 
C_  s  ->  ( T  i^i  U )  C_  ( s  i^i  U
) )
1513, 14syl 15 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( T  i^i  U )  C_  (
s  i^i  U )
)
16 inss2 3403 . . . . . . 7  |-  ( s  i^i  U )  C_  U
1715, 16jctir 524 . . . . . 6  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( ( T  i^i  U )  C_  ( s  i^i  U
)  /\  ( s  i^i  U )  C_  U
) )
1883ad2ant1 976 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( T  i^i  U ) C U )
191, 2, 3, 7, 5lcvbr3 29835 . . . . . . . . . 10  |-  ( ph  ->  ( ( T  i^i  U ) C U  <->  ( ( T  i^i  U )  C.  U  /\  A. r  e.  S  ( ( ( T  i^i  U ) 
C_  r  /\  r  C_  U )  ->  (
r  =  ( T  i^i  U )  \/  r  =  U ) ) ) ) )
2019adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S )  ->  (
( T  i^i  U
) C U  <->  ( ( T  i^i  U )  C.  U  /\  A. r  e.  S  ( ( ( T  i^i  U ) 
C_  r  /\  r  C_  U )  ->  (
r  =  ( T  i^i  U )  \/  r  =  U ) ) ) ) )
213adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  S )  ->  W  e.  LMod )
22 simpr 447 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  S )  ->  s  e.  S )
235adantr 451 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  S )  ->  U  e.  S )
241lssincl 15738 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  s  e.  S  /\  U  e.  S )  ->  (
s  i^i  U )  e.  S )
2521, 22, 23, 24syl3anc 1182 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  S )  ->  (
s  i^i  U )  e.  S )
26 sseq2 3213 . . . . . . . . . . . . . 14  |-  ( r  =  ( s  i^i 
U )  ->  (
( T  i^i  U
)  C_  r  <->  ( T  i^i  U )  C_  (
s  i^i  U )
) )
27 sseq1 3212 . . . . . . . . . . . . . 14  |-  ( r  =  ( s  i^i 
U )  ->  (
r  C_  U  <->  ( s  i^i  U )  C_  U
) )
2826, 27anbi12d 691 . . . . . . . . . . . . 13  |-  ( r  =  ( s  i^i 
U )  ->  (
( ( T  i^i  U )  C_  r  /\  r  C_  U )  <->  ( ( T  i^i  U )  C_  ( s  i^i  U
)  /\  ( s  i^i  U )  C_  U
) ) )
29 eqeq1 2302 . . . . . . . . . . . . . 14  |-  ( r  =  ( s  i^i 
U )  ->  (
r  =  ( T  i^i  U )  <->  ( s  i^i  U )  =  ( T  i^i  U ) ) )
30 eqeq1 2302 . . . . . . . . . . . . . 14  |-  ( r  =  ( s  i^i 
U )  ->  (
r  =  U  <->  ( s  i^i  U )  =  U ) )
3129, 30orbi12d 690 . . . . . . . . . . . . 13  |-  ( r  =  ( s  i^i 
U )  ->  (
( r  =  ( T  i^i  U )  \/  r  =  U )  <->  ( ( s  i^i  U )  =  ( T  i^i  U
)  \/  ( s  i^i  U )  =  U ) ) )
3228, 31imbi12d 311 . . . . . . . . . . . 12  |-  ( r  =  ( s  i^i 
U )  ->  (
( ( ( T  i^i  U )  C_  r  /\  r  C_  U
)  ->  ( r  =  ( T  i^i  U )  \/  r  =  U ) )  <->  ( (
( T  i^i  U
)  C_  ( s  i^i  U )  /\  (
s  i^i  U )  C_  U )  ->  (
( s  i^i  U
)  =  ( T  i^i  U )  \/  ( s  i^i  U
)  =  U ) ) ) )
3332rspcv 2893 . . . . . . . . . . 11  |-  ( ( s  i^i  U )  e.  S  ->  ( A. r  e.  S  ( ( ( T  i^i  U )  C_  r  /\  r  C_  U
)  ->  ( r  =  ( T  i^i  U )  \/  r  =  U ) )  -> 
( ( ( T  i^i  U )  C_  ( s  i^i  U
)  /\  ( s  i^i  U )  C_  U
)  ->  ( (
s  i^i  U )  =  ( T  i^i  U )  \/  ( s  i^i  U )  =  U ) ) ) )
3425, 33syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  S )  ->  ( A. r  e.  S  ( ( ( T  i^i  U )  C_  r  /\  r  C_  U
)  ->  ( r  =  ( T  i^i  U )  \/  r  =  U ) )  -> 
( ( ( T  i^i  U )  C_  ( s  i^i  U
)  /\  ( s  i^i  U )  C_  U
)  ->  ( (
s  i^i  U )  =  ( T  i^i  U )  \/  ( s  i^i  U )  =  U ) ) ) )
3534adantld 453 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S )  ->  (
( ( T  i^i  U )  C.  U  /\  A. r  e.  S  ( ( ( T  i^i  U )  C_  r  /\  r  C_  U )  -> 
( r  =  ( T  i^i  U )  \/  r  =  U ) ) )  -> 
( ( ( T  i^i  U )  C_  ( s  i^i  U
)  /\  ( s  i^i  U )  C_  U
)  ->  ( (
s  i^i  U )  =  ( T  i^i  U )  \/  ( s  i^i  U )  =  U ) ) ) )
3620, 35sylbid 206 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S )  ->  (
( T  i^i  U
) C U  -> 
( ( ( T  i^i  U )  C_  ( s  i^i  U
)  /\  ( s  i^i  U )  C_  U
)  ->  ( (
s  i^i  U )  =  ( T  i^i  U )  \/  ( s  i^i  U )  =  U ) ) ) )
37363adant3 975 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( ( T  i^i  U ) C U  ->  ( (
( T  i^i  U
)  C_  ( s  i^i  U )  /\  (
s  i^i  U )  C_  U )  ->  (
( s  i^i  U
)  =  ( T  i^i  U )  \/  ( s  i^i  U
)  =  U ) ) ) )
3818, 37mpd 14 . . . . . 6  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
( T  i^i  U
)  C_  ( s  i^i  U )  /\  (
s  i^i  U )  C_  U )  ->  (
( s  i^i  U
)  =  ( T  i^i  U )  \/  ( s  i^i  U
)  =  U ) ) )
3917, 38mpd 14 . . . . 5  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
s  i^i  U )  =  ( T  i^i  U )  \/  ( s  i^i  U )  =  U ) )
40 oveq1 5881 . . . . . . 7  |-  ( ( s  i^i  U )  =  ( T  i^i  U )  ->  ( (
s  i^i  U )  .(+)  T )  =  ( ( T  i^i  U
)  .(+)  T ) )
4133ad2ant1 976 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  W  e.  LMod )
4243ad2ant1 976 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  T  e.  S )
4353ad2ant1 976 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  U  e.  S )
44 simp2 956 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  s  e.  S )
45 simp3r 984 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  s  C_  ( T  .(+)  U ) )
461, 10, 2, 41, 42, 43, 44, 13, 45lcvexchlem3 29848 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
s  i^i  U )  .(+)  T )  =  s )
471lsssssubg 15731 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  S  C_  (SubGrp `  W ) )
483, 47syl 15 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  (SubGrp `  W
) )
4948, 7sseldd 3194 . . . . . . . . . 10  |-  ( ph  ->  ( T  i^i  U
)  e.  (SubGrp `  W ) )
5048, 4sseldd 3194 . . . . . . . . . 10  |-  ( ph  ->  T  e.  (SubGrp `  W ) )
51 inss1 3402 . . . . . . . . . . 11  |-  ( T  i^i  U )  C_  T
5251a1i 10 . . . . . . . . . 10  |-  ( ph  ->  ( T  i^i  U
)  C_  T )
5310lsmss1 14991 . . . . . . . . . 10  |-  ( ( ( T  i^i  U
)  e.  (SubGrp `  W )  /\  T  e.  (SubGrp `  W )  /\  ( T  i^i  U
)  C_  T )  ->  ( ( T  i^i  U )  .(+)  T )  =  T )
5449, 50, 52, 53syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( ( T  i^i  U )  .(+)  T )  =  T )
55543ad2ant1 976 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( ( T  i^i  U )  .(+)  T )  =  T )
5646, 55eqeq12d 2310 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
( s  i^i  U
)  .(+)  T )  =  ( ( T  i^i  U )  .(+)  T )  <->  s  =  T ) )
5740, 56syl5ib 210 . . . . . 6  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
s  i^i  U )  =  ( T  i^i  U )  ->  s  =  T ) )
58 oveq1 5881 . . . . . . 7  |-  ( ( s  i^i  U )  =  U  ->  (
( s  i^i  U
)  .(+)  T )  =  ( U  .(+)  T ) )
59 lmodabl 15688 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  W  e. 
Abel )
603, 59syl 15 . . . . . . . . . 10  |-  ( ph  ->  W  e.  Abel )
6148, 5sseldd 3194 . . . . . . . . . 10  |-  ( ph  ->  U  e.  (SubGrp `  W ) )
6210lsmcom 15166 . . . . . . . . . 10  |-  ( ( W  e.  Abel  /\  U  e.  (SubGrp `  W )  /\  T  e.  (SubGrp `  W ) )  -> 
( U  .(+)  T )  =  ( T  .(+)  U ) )
6360, 61, 50, 62syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( U  .(+)  T )  =  ( T  .(+)  U ) )
64633ad2ant1 976 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( U  .(+) 
T )  =  ( T  .(+)  U )
)
6546, 64eqeq12d 2310 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
( s  i^i  U
)  .(+)  T )  =  ( U  .(+)  T )  <-> 
s  =  ( T 
.(+)  U ) ) )
6658, 65syl5ib 210 . . . . . 6  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
s  i^i  U )  =  U  ->  s  =  ( T  .(+)  U ) ) )
6757, 66orim12d 811 . . . . 5  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
( s  i^i  U
)  =  ( T  i^i  U )  \/  ( s  i^i  U
)  =  U )  ->  ( s  =  T  \/  s  =  ( T  .(+)  U ) ) ) )
6839, 67mpd 14 . . . 4  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( s  =  T  \/  s  =  ( T  .(+)  U ) ) )
69683exp 1150 . . 3  |-  ( ph  ->  ( s  e.  S  ->  ( ( T  C_  s  /\  s  C_  ( T  .(+)  U ) )  ->  ( s  =  T  \/  s  =  ( T  .(+)  U ) ) ) ) )
7069ralrimiv 2638 . 2  |-  ( ph  ->  A. s  e.  S  ( ( T  C_  s  /\  s  C_  ( T  .(+)  U ) )  ->  ( s  =  T  \/  s  =  ( T  .(+)  U ) ) ) )
711, 10lsmcl 15852 . . . 4  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  ( T  .(+)  U )  e.  S )
723, 4, 5, 71syl3anc 1182 . . 3  |-  ( ph  ->  ( T  .(+)  U )  e.  S )
731, 2, 3, 4, 72lcvbr3 29835 . 2  |-  ( ph  ->  ( T C ( T  .(+)  U )  <->  ( T  C.  ( T 
.(+)  U )  /\  A. s  e.  S  (
( T  C_  s  /\  s  C_  ( T 
.(+)  U ) )  -> 
( s  =  T  \/  s  =  ( T  .(+)  U )
) ) ) ) )
7412, 70, 73mpbir2and 888 1  |-  ( ph  ->  T C ( T 
.(+)  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556    i^i cin 3164    C_ wss 3165    C. wpss 3166   class class class wbr 4039   ` cfv 5271  (class class class)co 5874  SubGrpcsubg 14631   LSSumclsm 14961   Abelcabel 15106   LModclmod 15643   LSubSpclss 15705    <oLL clcv 29830
This theorem is referenced by:  lcvexch  29851
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-cntz 14809  df-oppg 14835  df-lsm 14963  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-ur 15358  df-lmod 15645  df-lss 15706  df-lcv 29831
  Copyright terms: Public domain W3C validator