Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilcnv Structured version   Unicode version

Theorem ldilcnv 30986
Description: The converse of a lattice dilation is a lattice dilation. (Contributed by NM, 10-May-2013.)
Hypotheses
Ref Expression
ldilcnv.h  |-  H  =  ( LHyp `  K
)
ldilcnv.d  |-  D  =  ( ( LDil `  K
) `  W )
Assertion
Ref Expression
ldilcnv  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  `' F  e.  D )

Proof of Theorem ldilcnv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpll 732 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  K  e.  HL )
2 ldilcnv.h . . . 4  |-  H  =  ( LHyp `  K
)
3 eqid 2438 . . . 4  |-  ( LAut `  K )  =  (
LAut `  K )
4 ldilcnv.d . . . 4  |-  D  =  ( ( LDil `  K
) `  W )
52, 3, 4ldillaut 30982 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  F  e.  ( LAut `  K )
)
63lautcnv 30961 . . 3  |-  ( ( K  e.  HL  /\  F  e.  ( LAut `  K ) )  ->  `' F  e.  ( LAut `  K ) )
71, 5, 6syl2anc 644 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  `' F  e.  ( LAut `  K
) )
8 eqid 2438 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
9 eqid 2438 . . . . . . . . 9  |-  ( le
`  K )  =  ( le `  K
)
108, 9, 2, 4ldilval 30984 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D  /\  ( x  e.  (
Base `  K )  /\  x ( le `  K ) W ) )  ->  ( F `  x )  =  x )
11103expa 1154 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D )  /\  (
x  e.  ( Base `  K )  /\  x
( le `  K
) W ) )  ->  ( F `  x )  =  x )
12113impb 1150 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( F `  x )  =  x )
1312fveq2d 5735 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( `' F `  ( F `  x ) )  =  ( `' F `  x ) )
148, 2, 4ldil1o 30983 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
15143ad2ant1 979 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  F :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
16 simp2 959 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  x  e.  ( Base `  K )
)
17 f1ocnvfv1 6017 . . . . . 6  |-  ( ( F : ( Base `  K ) -1-1-onto-> ( Base `  K
)  /\  x  e.  ( Base `  K )
)  ->  ( `' F `  ( F `  x ) )  =  x )
1815, 16, 17syl2anc 644 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( `' F `  ( F `  x ) )  =  x )
1913, 18eqtr3d 2472 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( `' F `  x )  =  x )
20193exp 1153 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  ( x  e.  ( Base `  K
)  ->  ( x
( le `  K
) W  ->  ( `' F `  x )  =  x ) ) )
2120ralrimiv 2790 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  A. x  e.  ( Base `  K
) ( x ( le `  K ) W  ->  ( `' F `  x )  =  x ) )
228, 9, 2, 3, 4isldil 30981 . . 3  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( `' F  e.  D  <->  ( `' F  e.  ( LAut `  K
)  /\  A. x  e.  ( Base `  K
) ( x ( le `  K ) W  ->  ( `' F `  x )  =  x ) ) ) )
2322adantr 453 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  ( `' F  e.  D  <->  ( `' F  e.  ( LAut `  K )  /\  A. x  e.  ( Base `  K ) ( x ( le `  K
) W  ->  ( `' F `  x )  =  x ) ) ) )
247, 21, 23mpbir2and 890 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  D
)  ->  `' F  e.  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   class class class wbr 4215   `'ccnv 4880   -1-1-onto->wf1o 5456   ` cfv 5457   Basecbs 13474   lecple 13541   HLchlt 30222   LHypclh 30855   LAutclaut 30856   LDilcldil 30971
This theorem is referenced by:  ltrncnv  31017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-map 7023  df-laut 30860  df-ldil 30975
  Copyright terms: Public domain W3C validator