![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > Mathboxes > ldual0vs | Unicode version |
Description: Scalar zero times a functional is the zero functional. (Contributed by NM, 17-Feb-2015.) |
Ref | Expression |
---|---|
ldual0vs.f |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ldual0vs.r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ldual0vs.z |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ldual0vs.d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ldual0vs.t |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ldual0vs.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ldual0vs.w |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ldual0vs.g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ldual0vs |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldual0vs.r |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ldual0vs.z |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ldual0vs.d |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | eqid 2408 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | eqid 2408 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | ldual0vs.w |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 1, 2, 3, 4, 5, 6 | ldual0 29634 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7 | oveq1d 6059 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 3, 6 | lduallmod 29640 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | ldual0vs.f |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | eqid 2408 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | ldual0vs.g |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 10, 3, 11, 6, 12 | ldualelvbase 29614 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | ldual0vs.t |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | ldual0vs.o |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 11, 4, 14, 5, 15 | lmod0vs 15942 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 9, 13, 16 | syl2anc 643 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 8, 17 | eqtr3d 2442 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem is referenced by: lkrss2N 29656 lcfrlem33 32062 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-13 1723 ax-14 1725 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2389 ax-rep 4284 ax-sep 4294 ax-nul 4302 ax-pow 4341 ax-pr 4367 ax-un 4664 ax-cnex 9006 ax-resscn 9007 ax-1cn 9008 ax-icn 9009 ax-addcl 9010 ax-addrcl 9011 ax-mulcl 9012 ax-mulrcl 9013 ax-mulcom 9014 ax-addass 9015 ax-mulass 9016 ax-distr 9017 ax-i2m1 9018 ax-1ne0 9019 ax-1rid 9020 ax-rnegex 9021 ax-rrecex 9022 ax-cnre 9023 ax-pre-lttri 9024 ax-pre-lttrn 9025 ax-pre-ltadd 9026 ax-pre-mulgt0 9027 |
This theorem depends on definitions: df-bi 178 df-or 360 df-an 361 df-3or 937 df-3an 938 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-eu 2262 df-mo 2263 df-clab 2395 df-cleq 2401 df-clel 2404 df-nfc 2533 df-ne 2573 df-nel 2574 df-ral 2675 df-rex 2676 df-reu 2677 df-rmo 2678 df-rab 2679 df-v 2922 df-sbc 3126 df-csb 3216 df-dif 3287 df-un 3289 df-in 3291 df-ss 3298 df-pss 3300 df-nul 3593 df-if 3704 df-pw 3765 df-sn 3784 df-pr 3785 df-tp 3786 df-op 3787 df-uni 3980 df-int 4015 df-iun 4059 df-br 4177 df-opab 4231 df-mpt 4232 df-tr 4267 df-eprel 4458 df-id 4462 df-po 4467 df-so 4468 df-fr 4505 df-we 4507 df-ord 4548 df-on 4549 df-lim 4550 df-suc 4551 df-om 4809 df-xp 4847 df-rel 4848 df-cnv 4849 df-co 4850 df-dm 4851 df-rn 4852 df-res 4853 df-ima 4854 df-iota 5381 df-fun 5419 df-fn 5420 df-f 5421 df-f1 5422 df-fo 5423 df-f1o 5424 df-fv 5425 df-ov 6047 df-oprab 6048 df-mpt2 6049 df-of 6268 df-1st 6312 df-2nd 6313 df-tpos 6442 df-riota 6512 df-recs 6596 df-rdg 6631 df-1o 6687 df-oadd 6691 df-er 6868 df-map 6983 df-en 7073 df-dom 7074 df-sdom 7075 df-fin 7076 df-pnf 9082 df-mnf 9083 df-xr 9084 df-ltxr 9085 df-le 9086 df-sub 9253 df-neg 9254 df-nn 9961 df-2 10018 df-3 10019 df-4 10020 df-5 10021 df-6 10022 df-n0 10182 df-z 10243 df-uz 10449 df-fz 11004 df-struct 13430 df-ndx 13431 df-slot 13432 df-base 13433 df-sets 13434 df-plusg 13501 df-mulr 13502 df-sca 13504 df-vsca 13505 df-0g 13686 df-mnd 14649 df-grp 14771 df-minusg 14772 df-sbg 14773 df-cmn 15373 df-abl 15374 df-mgp 15608 df-rng 15622 df-ur 15624 df-oppr 15687 df-lmod 15911 df-lfl 29545 df-ldual 29611 |
Copyright terms: Public domain | W3C validator |