Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldual1dim Unicode version

Theorem ldual1dim 29174
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
ldual1dim.f  |-  F  =  (LFnl `  W )
ldual1dim.l  |-  L  =  (LKer `  W )
ldual1dim.d  |-  D  =  (LDual `  W )
ldual1dim.n  |-  N  =  ( LSpan `  D )
ldual1dim.w  |-  ( ph  ->  W  e.  LVec )
ldual1dim.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
ldual1dim  |-  ( ph  ->  ( N `  { G } )  =  {
g  e.  F  | 
( L `  G
)  C_  ( L `  g ) } )
Distinct variable groups:    D, g    g, G    g, N    ph, g
Allowed substitution hints:    F( g)    L( g)    W( g)

Proof of Theorem ldual1dim
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 eqid 2316 . . . . . . . 8  |-  (Scalar `  W )  =  (Scalar `  W )
2 eqid 2316 . . . . . . . 8  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
3 ldual1dim.d . . . . . . . 8  |-  D  =  (LDual `  W )
4 eqid 2316 . . . . . . . 8  |-  (Scalar `  D )  =  (Scalar `  D )
5 eqid 2316 . . . . . . . 8  |-  ( Base `  (Scalar `  D )
)  =  ( Base `  (Scalar `  D )
)
6 ldual1dim.w . . . . . . . 8  |-  ( ph  ->  W  e.  LVec )
71, 2, 3, 4, 5, 6ldualsbase 29141 . . . . . . 7  |-  ( ph  ->  ( Base `  (Scalar `  D ) )  =  ( Base `  (Scalar `  W ) ) )
87eleq2d 2383 . . . . . 6  |-  ( ph  ->  ( k  e.  (
Base `  (Scalar `  D
) )  <->  k  e.  ( Base `  (Scalar `  W
) ) ) )
98anbi1d 685 . . . . 5  |-  ( ph  ->  ( ( k  e.  ( Base `  (Scalar `  D ) )  /\  g  =  ( k
( .s `  D
) G ) )  <-> 
( k  e.  (
Base `  (Scalar `  W
) )  /\  g  =  ( k ( .s `  D ) G ) ) ) )
10 ldual1dim.f . . . . . . . 8  |-  F  =  (LFnl `  W )
11 eqid 2316 . . . . . . . 8  |-  ( Base `  W )  =  (
Base `  W )
12 eqid 2316 . . . . . . . 8  |-  ( .r
`  (Scalar `  W )
)  =  ( .r
`  (Scalar `  W )
)
13 eqid 2316 . . . . . . . 8  |-  ( .s
`  D )  =  ( .s `  D
)
146adantr 451 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) ) )  ->  W  e.  LVec )
15 simpr 447 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) ) )  -> 
k  e.  ( Base `  (Scalar `  W )
) )
16 ldual1dim.g . . . . . . . . 9  |-  ( ph  ->  G  e.  F )
1716adantr 451 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) ) )  ->  G  e.  F )
1810, 11, 1, 2, 12, 3, 13, 14, 15, 17ldualvs 29145 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) ) )  -> 
( k ( .s
`  D ) G )  =  ( G  o F ( .r
`  (Scalar `  W )
) ( ( Base `  W )  X.  {
k } ) ) )
1918eqeq2d 2327 . . . . . 6  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) ) )  -> 
( g  =  ( k ( .s `  D ) G )  <-> 
g  =  ( G  o F ( .r
`  (Scalar `  W )
) ( ( Base `  W )  X.  {
k } ) ) ) )
2019pm5.32da 622 . . . . 5  |-  ( ph  ->  ( ( k  e.  ( Base `  (Scalar `  W ) )  /\  g  =  ( k
( .s `  D
) G ) )  <-> 
( k  e.  (
Base `  (Scalar `  W
) )  /\  g  =  ( G  o F ( .r `  (Scalar `  W ) ) ( ( Base `  W
)  X.  { k } ) ) ) ) )
219, 20bitrd 244 . . . 4  |-  ( ph  ->  ( ( k  e.  ( Base `  (Scalar `  D ) )  /\  g  =  ( k
( .s `  D
) G ) )  <-> 
( k  e.  (
Base `  (Scalar `  W
) )  /\  g  =  ( G  o F ( .r `  (Scalar `  W ) ) ( ( Base `  W
)  X.  { k } ) ) ) ) )
2221rexbidv2 2600 . . 3  |-  ( ph  ->  ( E. k  e.  ( Base `  (Scalar `  D ) ) g  =  ( k ( .s `  D ) G )  <->  E. k  e.  ( Base `  (Scalar `  W ) ) g  =  ( G  o F ( .r `  (Scalar `  W ) ) ( ( Base `  W
)  X.  { k } ) ) ) )
2322abbidv 2430 . 2  |-  ( ph  ->  { g  |  E. k  e.  ( Base `  (Scalar `  D )
) g  =  ( k ( .s `  D ) G ) }  =  { g  |  E. k  e.  ( Base `  (Scalar `  W ) ) g  =  ( G  o F ( .r `  (Scalar `  W ) ) ( ( Base `  W
)  X.  { k } ) ) } )
24 lveclmod 15908 . . . . 5  |-  ( W  e.  LVec  ->  W  e. 
LMod )
253, 24lduallmod 29161 . . . 4  |-  ( W  e.  LVec  ->  D  e. 
LMod )
266, 25syl 15 . . 3  |-  ( ph  ->  D  e.  LMod )
27 eqid 2316 . . . 4  |-  ( Base `  D )  =  (
Base `  D )
2810, 3, 27, 6, 16ldualelvbase 29135 . . 3  |-  ( ph  ->  G  e.  ( Base `  D ) )
29 ldual1dim.n . . . 4  |-  N  =  ( LSpan `  D )
304, 5, 27, 13, 29lspsn 15808 . . 3  |-  ( ( D  e.  LMod  /\  G  e.  ( Base `  D
) )  ->  ( N `  { G } )  =  {
g  |  E. k  e.  ( Base `  (Scalar `  D ) ) g  =  ( k ( .s `  D ) G ) } )
3126, 28, 30syl2anc 642 . 2  |-  ( ph  ->  ( N `  { G } )  =  {
g  |  E. k  e.  ( Base `  (Scalar `  D ) ) g  =  ( k ( .s `  D ) G ) } )
32 ldual1dim.l . . 3  |-  L  =  (LKer `  W )
3311, 1, 10, 32, 2, 12, 6, 16lfl1dim 29129 . 2  |-  ( ph  ->  { g  e.  F  |  ( L `  G )  C_  ( L `  g ) }  =  { g  |  E. k  e.  (
Base `  (Scalar `  W
) ) g  =  ( G  o F ( .r `  (Scalar `  W ) ) ( ( Base `  W
)  X.  { k } ) ) } )
3423, 31, 333eqtr4d 2358 1  |-  ( ph  ->  ( N `  { G } )  =  {
g  e.  F  | 
( L `  G
)  C_  ( L `  g ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1633    e. wcel 1701   {cab 2302   E.wrex 2578   {crab 2581    C_ wss 3186   {csn 3674    X. cxp 4724   ` cfv 5292  (class class class)co 5900    o Fcof 6118   Basecbs 13195   .rcmulr 13256  Scalarcsca 13258   .scvsca 13259   LModclmod 15676   LSpanclspn 15777   LVecclvec 15904  LFnlclfn 29065  LKerclk 29093  LDualcld 29131
This theorem is referenced by:  mapdsn3  31651
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-of 6120  df-1st 6164  df-2nd 6165  df-tpos 6276  df-riota 6346  df-recs 6430  df-rdg 6465  df-1o 6521  df-oadd 6525  df-er 6702  df-map 6817  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-nn 9792  df-2 9849  df-3 9850  df-4 9851  df-5 9852  df-6 9853  df-n0 10013  df-z 10072  df-uz 10278  df-fz 10830  df-struct 13197  df-ndx 13198  df-slot 13199  df-base 13200  df-sets 13201  df-ress 13202  df-plusg 13268  df-mulr 13269  df-sca 13271  df-vsca 13272  df-0g 13453  df-mnd 14416  df-submnd 14465  df-grp 14538  df-minusg 14539  df-sbg 14540  df-subg 14667  df-cntz 14842  df-lsm 14996  df-cmn 15140  df-abl 15141  df-mgp 15375  df-rng 15389  df-ur 15391  df-oppr 15454  df-dvdsr 15472  df-unit 15473  df-invr 15503  df-drng 15563  df-lmod 15678  df-lss 15739  df-lsp 15778  df-lvec 15905  df-lshyp 28985  df-lfl 29066  df-lkr 29094  df-ldual 29132
  Copyright terms: Public domain W3C validator