Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lduallmodlem Unicode version

Theorem lduallmodlem 29342
Description: Lemma for lduallmod 29343. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lduallmod.d  |-  D  =  (LDual `  W )
lduallmod.w  |-  ( ph  ->  W  e.  LMod )
lduallmod.v  |-  V  =  ( Base `  W
)
lduallmod.p  |-  .+  =  o F ( +g  `  W
)
lduallmod.f  |-  F  =  (LFnl `  W )
lduallmod.r  |-  R  =  (Scalar `  W )
lduallmod.k  |-  K  =  ( Base `  R
)
lduallmod.t  |-  .X.  =  ( .r `  R )
lduallmod.o  |-  O  =  (oppr
`  R )
lduallmod.s  |-  .x.  =  ( .s `  D )
Assertion
Ref Expression
lduallmodlem  |-  ( ph  ->  D  e.  LMod )

Proof of Theorem lduallmodlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lduallmod.f . . . 4  |-  F  =  (LFnl `  W )
2 lduallmod.d . . . 4  |-  D  =  (LDual `  W )
3 eqid 2283 . . . 4  |-  ( Base `  D )  =  (
Base `  D )
4 lduallmod.w . . . 4  |-  ( ph  ->  W  e.  LMod )
51, 2, 3, 4ldualvbase 29316 . . 3  |-  ( ph  ->  ( Base `  D
)  =  F )
65eqcomd 2288 . 2  |-  ( ph  ->  F  =  ( Base `  D ) )
7 eqidd 2284 . 2  |-  ( ph  ->  ( +g  `  D
)  =  ( +g  `  D ) )
8 lduallmod.r . . . 4  |-  R  =  (Scalar `  W )
9 lduallmod.o . . . 4  |-  O  =  (oppr
`  R )
10 eqid 2283 . . . 4  |-  (Scalar `  D )  =  (Scalar `  D )
118, 9, 2, 10, 4ldualsca 29322 . . 3  |-  ( ph  ->  (Scalar `  D )  =  O )
1211eqcomd 2288 . 2  |-  ( ph  ->  O  =  (Scalar `  D ) )
13 lduallmod.s . . 3  |-  .x.  =  ( .s `  D )
1413a1i 10 . 2  |-  ( ph  ->  .x.  =  ( .s
`  D ) )
15 lduallmod.k . . . 4  |-  K  =  ( Base `  R
)
169, 15opprbas 15411 . . 3  |-  K  =  ( Base `  O
)
1716a1i 10 . 2  |-  ( ph  ->  K  =  ( Base `  O ) )
18 eqid 2283 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
199, 18oppradd 15412 . . 3  |-  ( +g  `  R )  =  ( +g  `  O )
2019a1i 10 . 2  |-  ( ph  ->  ( +g  `  R
)  =  ( +g  `  O ) )
2111fveq2d 5529 . 2  |-  ( ph  ->  ( .r `  (Scalar `  D ) )  =  ( .r `  O
) )
22 eqid 2283 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  R
)
239, 22oppr1 15416 . . 3  |-  ( 1r
`  R )  =  ( 1r `  O
)
2423a1i 10 . 2  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  O ) )
258lmodrng 15635 . . 3  |-  ( W  e.  LMod  ->  R  e. 
Ring )
269opprrng 15413 . . 3  |-  ( R  e.  Ring  ->  O  e. 
Ring )
274, 25, 263syl 18 . 2  |-  ( ph  ->  O  e.  Ring )
282, 4ldualgrp 29336 . 2  |-  ( ph  ->  D  e.  Grp )
2943ad2ant1 976 . . 3  |-  ( (
ph  /\  x  e.  K  /\  y  e.  F
)  ->  W  e.  LMod )
30 simp2 956 . . 3  |-  ( (
ph  /\  x  e.  K  /\  y  e.  F
)  ->  x  e.  K )
31 simp3 957 . . 3  |-  ( (
ph  /\  x  e.  K  /\  y  e.  F
)  ->  y  e.  F )
321, 8, 15, 2, 13, 29, 30, 31ldualvscl 29329 . 2  |-  ( (
ph  /\  x  e.  K  /\  y  e.  F
)  ->  ( x  .x.  y )  e.  F
)
33 eqid 2283 . . 3  |-  ( +g  `  D )  =  ( +g  `  D )
344adantr 451 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  F  /\  z  e.  F ) )  ->  W  e.  LMod )
35 simpr1 961 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  F  /\  z  e.  F ) )  ->  x  e.  K )
36 simpr2 962 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  F  /\  z  e.  F ) )  -> 
y  e.  F )
37 simpr3 963 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  F  /\  z  e.  F ) )  -> 
z  e.  F )
381, 8, 15, 2, 33, 13, 34, 35, 36, 37ldualvsdi1 29333 . 2  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  F  /\  z  e.  F ) )  -> 
( x  .x.  (
y ( +g  `  D
) z ) )  =  ( ( x 
.x.  y ) ( +g  `  D ) ( x  .x.  z
) ) )
394adantr 451 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K  /\  z  e.  F ) )  ->  W  e.  LMod )
40 simpr1 961 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K  /\  z  e.  F ) )  ->  x  e.  K )
41 simpr2 962 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K  /\  z  e.  F ) )  -> 
y  e.  K )
42 simpr3 963 . . 3  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K  /\  z  e.  F ) )  -> 
z  e.  F )
431, 8, 18, 15, 2, 33, 13, 39, 40, 41, 42ldualvsdi2 29334 . 2  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K  /\  z  e.  F ) )  -> 
( ( x ( +g  `  R ) y )  .x.  z
)  =  ( ( x  .x.  z ) ( +g  `  D
) ( y  .x.  z ) ) )
44 eqid 2283 . . 3  |-  ( .r
`  (Scalar `  D )
)  =  ( .r
`  (Scalar `  D )
)
451, 8, 15, 2, 10, 44, 13, 39, 40, 41, 42ldualvsass2 29332 . 2  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K  /\  z  e.  F ) )  -> 
( ( x ( .r `  (Scalar `  D ) ) y )  .x.  z )  =  ( x  .x.  ( y  .x.  z
) ) )
46 lduallmod.v . . . 4  |-  V  =  ( Base `  W
)
47 lduallmod.t . . . 4  |-  .X.  =  ( .r `  R )
484adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  F )  ->  W  e.  LMod )
4915, 22rngidcl 15361 . . . . . 6  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  K )
504, 25, 493syl 18 . . . . 5  |-  ( ph  ->  ( 1r `  R
)  e.  K )
5150adantr 451 . . . 4  |-  ( (
ph  /\  x  e.  F )  ->  ( 1r `  R )  e.  K )
52 simpr 447 . . . 4  |-  ( (
ph  /\  x  e.  F )  ->  x  e.  F )
531, 46, 8, 15, 47, 2, 13, 48, 51, 52ldualvs 29327 . . 3  |-  ( (
ph  /\  x  e.  F )  ->  (
( 1r `  R
)  .x.  x )  =  ( x  o F  .X.  ( V  X.  { ( 1r `  R ) } ) ) )
5446, 8, 1, 15, 47, 22, 48, 52lfl1sc 29274 . . 3  |-  ( (
ph  /\  x  e.  F )  ->  (
x  o F  .X.  ( V  X.  { ( 1r `  R ) } ) )  =  x )
5553, 54eqtrd 2315 . 2  |-  ( (
ph  /\  x  e.  F )  ->  (
( 1r `  R
)  .x.  x )  =  x )
566, 7, 12, 14, 17, 20, 21, 24, 27, 28, 32, 38, 43, 45, 55islmodd 15633 1  |-  ( ph  ->  D  e.  LMod )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {csn 3640    X. cxp 4687   ` cfv 5255  (class class class)co 5858    o Fcof 6076   Basecbs 13148   +g cplusg 13208   .rcmulr 13209  Scalarcsca 13211   .scvsca 13212   Ringcrg 15337   1rcur 15339  opprcoppr 15404   LModclmod 15627  LFnlclfn 29247  LDualcld 29313
This theorem is referenced by:  lduallmod  29343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-tpos 6234  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-oppr 15405  df-lmod 15629  df-lfl 29248  df-ldual 29314
  Copyright terms: Public domain W3C validator