MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  le0neg1d Unicode version

Theorem le0neg1d 9530
Description: Comparison of a number and its negative to zero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
le0neg1d  |-  ( ph  ->  ( A  <_  0  <->  0  <_  -u A ) )

Proof of Theorem le0neg1d
StepHypRef Expression
1 leidd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 le0neg1 9468 . 2  |-  ( A  e.  RR  ->  ( A  <_  0  <->  0  <_  -u A ) )
31, 2syl 16 1  |-  ( ph  ->  ( A  <_  0  <->  0  <_  -u A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    e. wcel 1717   class class class wbr 4153   RRcr 8922   0cc0 8923    <_ cle 9054   -ucneg 9224
This theorem is referenced by:  sqeqd  11898  cnpart  11972  prmirred  16698  xrhmeo  18842  pjthlem1  19205  mbfposr  19411  dvfsumlem2  19778  coseq0negpitopi  20278  tanord  20307  cxpsqrlem  20460  asinlem3a  20577  atanlogadd  20621  lgsneg  20970  pntpbnd1  21147  pjhthlem1  22741  xrge0iifcnv  24123  mulle0b  24971  itgaddnclem2  25964  monotoddzzfi  26696  oddcomabszz  26698  jm2.24  26719  acongeq  26739
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-po 4444  df-so 4445  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-riota 6485  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226
  Copyright terms: Public domain W3C validator