MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leadd1 Structured version   Unicode version

Theorem leadd1 9489
Description: Addition to both sides of 'less than or equal to'. (Contributed by NM, 18-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
leadd1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( A  +  C )  <_  ( B  +  C )
) )

Proof of Theorem leadd1
StepHypRef Expression
1 ltadd1 9488 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  C  e.  RR )  ->  ( B  <  A  <->  ( B  +  C )  <  ( A  +  C )
) )
213com12 1157 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  <  A  <->  ( B  +  C )  <  ( A  +  C )
) )
32notbid 286 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( -.  B  <  A  <->  -.  ( B  +  C )  <  ( A  +  C
) ) )
4 simp1 957 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
5 simp2 958 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
64, 5lenltd 9212 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
7 simp3 959 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  C  e.  RR )
84, 7readdcld 9108 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  +  C )  e.  RR )
95, 7readdcld 9108 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  +  C )  e.  RR )
108, 9lenltd 9212 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  +  C
)  <_  ( B  +  C )  <->  -.  ( B  +  C )  <  ( A  +  C
) ) )
113, 6, 103bitr4d 277 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( A  +  C )  <_  ( B  +  C )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ w3a 936    e. wcel 1725   class class class wbr 4205  (class class class)co 6074   RRcr 8982    + caddc 8986    < clt 9113    <_ cle 9114
This theorem is referenced by:  leadd2  9490  lesubadd  9493  le2add  9503  leadd1i  9575  leadd1d  9613  zleltp1  10319  uzindOLD  10357  eluzp1p1  10504  eluzaddi  10505  icoshft  11012  iccshftr  11023  fzen  11065  fzaddel  11080  faclbnd6  11583  vdwlem3  13344  ovolunlem1a  19385  hstle  23726  stlei  23736  fznatpl1  25191
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-br 4206  df-opab 4260  df-mpt 4261  df-id 4491  df-po 4496  df-so 4497  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-er 6898  df-en 7103  df-dom 7104  df-sdom 7105  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119
  Copyright terms: Public domain W3C validator