MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumii Unicode version

Theorem lebnumii 18464
Description: Specialize the Lebesgue number lemma lebnum 18462 to the unit interval. (Contributed by Mario Carneiro, 14-Feb-2015.)
Assertion
Ref Expression
lebnumii  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  E. n  e.  NN  A. k  e.  ( 1 ... n
) E. u  e.  U  ( ( ( k  -  1 )  /  n ) [,] ( k  /  n
) )  C_  u
)
Distinct variable group:    k, n, u, U

Proof of Theorem lebnumii
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ii 18381 . . 3  |-  II  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
2 cnmet 18281 . . . . 5  |-  ( abs 
o.  -  )  e.  ( Met `  CC )
3 0re 8838 . . . . . . 7  |-  0  e.  RR
4 1re 8837 . . . . . . 7  |-  1  e.  RR
5 iccssre 10731 . . . . . . 7  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  ( 0 [,] 1
)  C_  RR )
63, 4, 5mp2an 653 . . . . . 6  |-  ( 0 [,] 1 )  C_  RR
7 ax-resscn 8794 . . . . . 6  |-  RR  C_  CC
86, 7sstri 3188 . . . . 5  |-  ( 0 [,] 1 )  C_  CC
9 metres2 17927 . . . . 5  |-  ( ( ( abs  o.  -  )  e.  ( Met `  CC )  /\  (
0 [,] 1 ) 
C_  CC )  -> 
( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  e.  ( Met `  (
0 [,] 1 ) ) )
102, 8, 9mp2an 653 . . . 4  |-  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )  e.  ( Met `  ( 0 [,] 1 ) )
1110a1i 10 . . 3  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )  e.  ( Met `  ( 0 [,] 1 ) ) )
12 iicmp 18390 . . . 4  |-  II  e.  Comp
1312a1i 10 . . 3  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  II  e.  Comp )
14 simpl 443 . . 3  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  U  C_  II )
15 simpr 447 . . 3  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  ( 0 [,] 1 )  = 
U. U )
161, 11, 13, 14, 15lebnum 18462 . 2  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  E. r  e.  RR+  A. x  e.  ( 0 [,] 1
) E. u  e.  U  ( x (
ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u )
17 rpreccl 10377 . . . . . . . 8  |-  ( r  e.  RR+  ->  ( 1  /  r )  e.  RR+ )
1817adantl 452 . . . . . . 7  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( 1  /  r )  e.  RR+ )
1918rpred 10390 . . . . . 6  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( 1  /  r )  e.  RR )
2018rpge0d 10394 . . . . . 6  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  0  <_  ( 1  /  r ) )
21 flge0nn0 10948 . . . . . 6  |-  ( ( ( 1  /  r
)  e.  RR  /\  0  <_  ( 1  / 
r ) )  -> 
( |_ `  (
1  /  r ) )  e.  NN0 )
2219, 20, 21syl2anc 642 . . . . 5  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( |_ `  ( 1  /  r
) )  e.  NN0 )
23 nn0p1nn 10003 . . . . 5  |-  ( ( |_ `  ( 1  /  r ) )  e.  NN0  ->  ( ( |_ `  ( 1  /  r ) )  +  1 )  e.  NN )
2422, 23syl 15 . . . 4  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( ( |_ `  ( 1  / 
r ) )  +  1 )  e.  NN )
25 elfznn 10819 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... ( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  k  e.  NN )
2625adantl 452 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  e.  NN )
2726nnrpd 10389 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  e.  RR+ )
2824adantr 451 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  e.  NN )
2928nnrpd 10389 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  e.  RR+ )
3027, 29rpdivcld 10407 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  RR+ )
3130rpred 10390 . . . . . . . 8  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  RR )
3230rpge0d 10394 . . . . . . . 8  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <_  ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) )
33 elfzle2 10800 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  k  <_  ( ( |_ `  ( 1  /  r
) )  +  1 ) )
3433adantl 452 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  <_  ( ( |_ `  ( 1  /  r
) )  +  1 ) )
3528nnred 9761 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  e.  RR )
3635recnd 8861 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  e.  CC )
3736mulid1d 8852 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( |_ `  ( 1  /  r
) )  +  1 )  x.  1 )  =  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )
3834, 37breqtrrd 4049 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  <_  ( ( ( |_
`  ( 1  / 
r ) )  +  1 )  x.  1 ) )
3926nnred 9761 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  e.  RR )
404a1i 10 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  1  e.  RR )
4128nngt0d 9789 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <  ( ( |_ `  ( 1  /  r
) )  +  1 ) )
42 ledivmul 9629 . . . . . . . . . 10  |-  ( ( k  e.  RR  /\  1  e.  RR  /\  (
( ( |_ `  ( 1  /  r
) )  +  1 )  e.  RR  /\  0  <  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) )  ->  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  <_ 
1  <->  k  <_  (
( ( |_ `  ( 1  /  r
) )  +  1 )  x.  1 ) ) )
4339, 40, 35, 41, 42syl112anc 1186 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  <_  1  <->  k  <_  ( ( ( |_ `  ( 1  /  r
) )  +  1 )  x.  1 ) ) )
4438, 43mpbird 223 . . . . . . . 8  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  <_  1 )
453, 4elicc2i 10716 . . . . . . . 8  |-  ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( 0 [,] 1 )  <->  ( (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  RR  /\  0  <_  ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  /\  ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  <_ 
1 ) )
4631, 32, 44, 45syl3anbrc 1136 . . . . . . 7  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( 0 [,] 1 ) )
47 oveq1 5865 . . . . . . . . . 10  |-  ( x  =  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  (
x ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  =  ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r ) )
4847sseq1d 3205 . . . . . . . . 9  |-  ( x  =  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  (
( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u 
<->  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u ) )
4948rexbidv 2564 . . . . . . . 8  |-  ( x  =  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  ( E. u  e.  U  ( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u 
<->  E. u  e.  U  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u ) )
5049rspcv 2880 . . . . . . 7  |-  ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( 0 [,] 1 )  ->  ( A. x  e.  (
0 [,] 1 ) E. u  e.  U  ( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  E. u  e.  U  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u ) )
5146, 50syl 15 . . . . . 6  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  ( A. x  e.  (
0 [,] 1 ) E. u  e.  U  ( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  E. u  e.  U  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u ) )
52 simplr 731 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  r  e.  RR+ )
5352rpred 10390 . . . . . . . . . . . . 13  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  r  e.  RR )
5431, 53resubcld 9211 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r )  e.  RR )
5554rexrd 8881 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r )  e.  RR* )
5631, 53readdcld 8862 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r )  e.  RR )
5756rexrd 8881 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r )  e.  RR* )
58 nnm1nn0 10005 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
5926, 58syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  -  1 )  e.  NN0 )
6059nn0red 10019 . . . . . . . . . . . . 13  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  -  1 )  e.  RR )
6160, 28nndivred 9794 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  -  1 )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  RR )
6239recnd 8861 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  e.  CC )
6360recnd 8861 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  -  1 )  e.  CC )
6428nnne0d 9790 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  =/=  0 )
6562, 63, 36, 64divsubdird 9575 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  -  (
k  -  1 ) )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  =  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ) )
66 ax-1cn 8795 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
67 nncan 9076 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( k  -  (
k  -  1 ) )  =  1 )
6862, 66, 67sylancl 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  -  ( k  -  1 ) )  =  1 )
6968oveq1d 5873 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  -  (
k  -  1 ) )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  =  ( 1  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
7065, 69eqtr3d 2317 . . . . . . . . . . . . 13  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) )  =  ( 1  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
7152rprecred 10401 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
1  /  r )  e.  RR )
72 flltp1 10932 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  r )  e.  RR  ->  (
1  /  r )  <  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )
7371, 72syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
1  /  r )  <  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )
74 rpgt0 10365 . . . . . . . . . . . . . . . 16  |-  ( r  e.  RR+  ->  0  < 
r )
7574ad2antlr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <  r )
76 ltdiv23 9647 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( r  e.  RR  /\  0  <  r )  /\  ( ( ( |_ `  ( 1  /  r ) )  +  1 )  e.  RR  /\  0  < 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )  -> 
( ( 1  / 
r )  <  (
( |_ `  (
1  /  r ) )  +  1 )  <-> 
( 1  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  <  r ) )
7740, 53, 75, 35, 41, 76syl122anc 1191 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( 1  /  r
)  <  ( ( |_ `  ( 1  / 
r ) )  +  1 )  <->  ( 1  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  < 
r ) )
7873, 77mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
1  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  <  r )
7970, 78eqbrtrd 4043 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) )  <  r )
8031, 61, 53, 79ltsub23d 9377 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r )  <  ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
8131, 52ltaddrpd 10419 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  <  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  +  r ) )
82 iccssioo 10719 . . . . . . . . . . 11  |-  ( ( ( ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  r )  e.  RR*  /\  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  +  r )  e.  RR* )  /\  ( ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  r )  <  (
( k  -  1 )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  /\  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  <  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  -  r ) (,) ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  +  r ) ) )
8355, 57, 80, 81, 82syl22anc 1183 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  -  r ) (,) ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  +  r ) ) )
843a1i 10 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  e.  RR )
8559nn0ge0d 10021 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <_  ( k  -  1 ) )
86 divge0 9625 . . . . . . . . . . . 12  |-  ( ( ( ( k  - 
1 )  e.  RR  /\  0  <_  ( k  -  1 ) )  /\  ( ( ( |_ `  ( 1  /  r ) )  +  1 )  e.  RR  /\  0  < 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )  -> 
0  <_  ( (
k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) )
8760, 85, 35, 41, 86syl22anc 1183 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <_  ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) )
88 iccss 10718 . . . . . . . . . . 11  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( 0  <_ 
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  /\  ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  <_ 
1 ) )  -> 
( ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) [,] (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) )  C_  ( 0 [,] 1 ) )
8984, 40, 87, 44, 88syl22anc 1183 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( 0 [,] 1 ) )
9083, 89ssind 3393 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r ) (,) ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  +  r ) )  i^i  ( 0 [,] 1
) ) )
91 eqid 2283 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
9291rexmet 18297 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( * Met `  RR )
9392a1i 10 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( * Met `  RR ) )
94 dfss1 3373 . . . . . . . . . . . . 13  |-  ( ( 0 [,] 1 ) 
C_  RR  <->  ( RR  i^i  ( 0 [,] 1
) )  =  ( 0 [,] 1 ) )
956, 94mpbi 199 . . . . . . . . . . . 12  |-  ( RR 
i^i  ( 0 [,] 1 ) )  =  ( 0 [,] 1
)
9646, 95syl6eleqr 2374 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( RR  i^i  ( 0 [,] 1
) ) )
97 rpxr 10361 . . . . . . . . . . . 12  |-  ( r  e.  RR+  ->  r  e. 
RR* )
9897ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  r  e.  RR* )
99 xpss12 4792 . . . . . . . . . . . . . . 15  |-  ( ( ( 0 [,] 1
)  C_  RR  /\  (
0 [,] 1 ) 
C_  RR )  -> 
( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  C_  ( RR  X.  RR ) )
1006, 6, 99mp2an 653 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  C_  ( RR  X.  RR )
101 resabs1 4984 . . . . . . . . . . . . . 14  |-  ( ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) 
C_  ( RR  X.  RR )  ->  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  =  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
102100, 101ax-mp 8 . . . . . . . . . . . . 13  |-  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  =  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
103102eqcomi 2287 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )  =  ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
104103blres 17977 . . . . . . . . . . 11  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( * Met `  RR )  /\  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( RR  i^i  ( 0 [,] 1
) )  /\  r  e.  RR* )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  =  ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  i^i  ( 0 [,] 1 ) ) )
10593, 96, 98, 104syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  =  ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  i^i  ( 0 [,] 1 ) ) )
10691bl2ioo 18298 . . . . . . . . . . . 12  |-  ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  e.  RR  /\  r  e.  RR )  ->  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  =  ( ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  r ) (,) (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r ) ) )
10731, 53, 106syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  =  ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r ) (,) ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  +  r ) ) )
108107ineq1d 3369 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  i^i  ( 0 [,] 1
) )  =  ( ( ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  r ) (,) (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r ) )  i^i  ( 0 [,] 1 ) ) )
109105, 108eqtrd 2315 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  =  ( ( ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  -  r
) (,) ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  +  r ) )  i^i  ( 0 [,] 1 ) ) )
11090, 109sseqtr4d 3215 . . . . . . . 8  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) (
ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r ) )
111 sstr2 3186 . . . . . . . 8  |-  ( ( ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) (
ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  ->  ( (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u  ->  ( ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  u ) )
112110, 111syl 15 . . . . . . 7  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  ( ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) [,] ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) )  C_  u
) )
113112reximdv 2654 . . . . . 6  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  ( E. u  e.  U  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  E. u  e.  U  ( ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) [,] (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) )  C_  u )
)
11451, 113syld 40 . . . . 5  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  ( A. x  e.  (
0 [,] 1 ) E. u  e.  U  ( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  E. u  e.  U  ( ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) [,] (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) )  C_  u )
)
115114ralrimdva 2633 . . . 4  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( A. x  e.  ( 0 [,] 1 ) E. u  e.  U  ( x ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u  ->  A. k  e.  ( 1 ... ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) E. u  e.  U  ( ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  u ) )
116 oveq2 5866 . . . . . 6  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
1 ... n )  =  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )
117 oveq2 5866 . . . . . . . . 9  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
( k  -  1 )  /  n )  =  ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
118 oveq2 5866 . . . . . . . . 9  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
k  /  n )  =  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
119117, 118oveq12d 5876 . . . . . . . 8  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
( ( k  - 
1 )  /  n
) [,] ( k  /  n ) )  =  ( ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) [,] ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ) )
120119sseq1d 3205 . . . . . . 7  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
( ( ( k  -  1 )  /  n ) [,] (
k  /  n ) )  C_  u  <->  ( (
( k  -  1 )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) [,] ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )  C_  u ) )
121120rexbidv 2564 . . . . . 6  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  ( E. u  e.  U  ( ( ( k  -  1 )  /  n ) [,] (
k  /  n ) )  C_  u  <->  E. u  e.  U  ( (
( k  -  1 )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) [,] ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )  C_  u ) )
122116, 121raleqbidv 2748 . . . . 5  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  ( A. k  e.  (
1 ... n ) E. u  e.  U  ( ( ( k  - 
1 )  /  n
) [,] ( k  /  n ) ) 
C_  u  <->  A. k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) E. u  e.  U  ( ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) [,] ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) )  C_  u
) )
123122rspcev 2884 . . . 4  |-  ( ( ( ( |_ `  ( 1  /  r
) )  +  1 )  e.  NN  /\  A. k  e.  ( 1 ... ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) E. u  e.  U  ( ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  u )  ->  E. n  e.  NN  A. k  e.  ( 1 ... n ) E. u  e.  U  ( ( ( k  - 
1 )  /  n
) [,] ( k  /  n ) ) 
C_  u )
12424, 115, 123ee12an 1353 . . 3  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( A. x  e.  ( 0 [,] 1 ) E. u  e.  U  ( x ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u  ->  E. n  e.  NN  A. k  e.  ( 1 ... n ) E. u  e.  U  ( ( ( k  - 
1 )  /  n
) [,] ( k  /  n ) ) 
C_  u ) )
125124rexlimdva 2667 . 2  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  ( E. r  e.  RR+  A. x  e.  ( 0 [,] 1
) E. u  e.  U  ( x (
ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u  ->  E. n  e.  NN  A. k  e.  ( 1 ... n ) E. u  e.  U  ( ( ( k  - 
1 )  /  n
) [,] ( k  /  n ) ) 
C_  u ) )
12616, 125mpd 14 1  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  E. n  e.  NN  A. k  e.  ( 1 ... n
) E. u  e.  U  ( ( ( k  -  1 )  /  n ) [,] ( k  /  n
) )  C_  u
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    i^i cin 3151    C_ wss 3152   U.cuni 3827   class class class wbr 4023    X. cxp 4687    |` cres 4691    o. ccom 4693   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   NN0cn0 9965   RR+crp 10354   (,)cioo 10656   [,]cicc 10659   ...cfz 10782   |_cfl 10924   abscabs 11719   * Metcxmt 16369   Metcme 16370   ballcbl 16371   Compccmp 17113   IIcii 18379
This theorem is referenced by:  cvmliftlem15  23829
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-ec 6662  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-cn 16957  df-cnp 16958  df-cmp 17114  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-ii 18381
  Copyright terms: Public domain W3C validator