MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lecasei Unicode version

Theorem lecasei 8926
Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007.)
Hypotheses
Ref Expression
lecase.1  |-  ( ph  ->  A  e.  RR )
lecase.2  |-  ( ph  ->  B  e.  RR )
lecase.3  |-  ( (
ph  /\  A  <_  B )  ->  ps )
lecase.4  |-  ( (
ph  /\  B  <_  A )  ->  ps )
Assertion
Ref Expression
lecasei  |-  ( ph  ->  ps )

Proof of Theorem lecasei
StepHypRef Expression
1 lecase.3 . 2  |-  ( (
ph  /\  A  <_  B )  ->  ps )
2 lecase.4 . 2  |-  ( (
ph  /\  B  <_  A )  ->  ps )
3 lecase.1 . . 3  |-  ( ph  ->  A  e.  RR )
4 lecase.2 . . 3  |-  ( ph  ->  B  e.  RR )
5 letric 8921 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  \/  B  <_  A ) )
63, 4, 5syl2anc 642 . 2  |-  ( ph  ->  ( A  <_  B  \/  B  <_  A ) )
71, 2, 6mpjaodan 761 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    e. wcel 1684   class class class wbr 4023   RRcr 8736    <_ cle 8868
This theorem is referenced by:  wloglei  9305  nn2ge  9771  max0sub  10523  leabs  11784  max0add  11795  limsupgre  11955  1arithlem4  12973  mndodcong  14857  reconn  18333  dyaddisj  18951  volcn  18961  ditgcl  19208  ditgswap  19209  ditgsplit  19211  dvfsumlem3  19375  ftc2ditg  19393  coseq0negpitopi  19871  asinlem3  20167  atanlogaddlem  20209  atanlogadd  20210  ppiub  20443  dchrisum0  20669  pntrmax  20713  padicabv  20779  nacsfix  26787  acongrep  27067  hbt  27334
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-pre-lttri 8811
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873
  Copyright terms: Public domain W3C validator