MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv1 Unicode version

Theorem lediv1 9807
Description: Division of both sides of a less than or equal to relation by a positive number. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
lediv1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( A  /  C )  <_  ( B  /  C ) ) )

Proof of Theorem lediv1
StepHypRef Expression
1 ltdiv1 9806 . . . 4  |-  ( ( B  e.  RR  /\  A  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  <  A  <->  ( B  /  C )  <  ( A  /  C ) ) )
213com12 1157 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  <  A  <->  ( B  /  C )  <  ( A  /  C ) ) )
32notbid 286 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( -.  B  < 
A  <->  -.  ( B  /  C )  <  ( A  /  C ) ) )
4 lenlt 9087 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
543adant3 977 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  -.  B  <  A ) )
6 gt0ne0 9425 . . . . . . 7  |-  ( ( C  e.  RR  /\  0  <  C )  ->  C  =/=  0 )
763adant1 975 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  0  <  C )  ->  C  =/=  0 )
8 redivcl 9665 . . . . . 6  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  C  =/=  0 )  ->  ( A  /  C )  e.  RR )
97, 8syld3an3 1229 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR  /\  0  <  C )  ->  ( A  /  C )  e.  RR )
1093expb 1154 . . . 4  |-  ( ( A  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  /  C )  e.  RR )
11103adant2 976 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  /  C
)  e.  RR )
1263adant1 975 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  0  <  C )  ->  C  =/=  0 )
13 redivcl 9665 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  C  =/=  0 )  ->  ( B  /  C )  e.  RR )
1412, 13syld3an3 1229 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR  /\  0  <  C )  ->  ( B  /  C )  e.  RR )
15143expb 1154 . . . 4  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( B  /  C )  e.  RR )
16153adant1 975 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( B  /  C
)  e.  RR )
1711, 16lenltd 9151 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  /  C )  <_  ( B  /  C )  <->  -.  ( B  /  C )  < 
( A  /  C
) ) )
183, 5, 173bitr4d 277 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( A  /  C )  <_  ( B  /  C ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1717    =/= wne 2550   class class class wbr 4153  (class class class)co 6020   RRcr 8922   0cc0 8923    < clt 9053    <_ cle 9054    / cdiv 9609
This theorem is referenced by:  ge0div  9809  ledivmul  9815  ledivmulOLD  9816  lediv23  9834  lediv1d  10622  icccntr  10968  quoremz  11163  quoremnn0ALT  11165  sin01bnd  12713  cos01bnd  12714  sin02gt0  12720  hashdvds  13091  ovolscalem1  19276  dyadf  19350  dyadovol  19352  dyadmaxlem  19356  mbfi1fseqlem6  19479  cosordlem  20300  cxpcn3lem  20498  dvdsflf1o  20839  ppiub  20855  logfacrlim  20875  bposlem5  20939  lgseisenlem1  21000  vmadivsum  21043  mulog2sumlem2  21096  logdivbnd  21117  cdj1i  23784  heiborlem8  26218  reglogleb  26646  stoweidlem1  27418  stoweidlem11  27428  stoweidlem14  27431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-po 4444  df-so 4445  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-riota 6485  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610
  Copyright terms: Public domain W3C validator