MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv12a Unicode version

Theorem lediv12a 9649
Description: Comparison of ratio of two nonnegative numbers. (Contributed by NM, 31-Dec-2005.)
Assertion
Ref Expression
lediv12a  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  <_  ( B  /  C ) )

Proof of Theorem lediv12a
StepHypRef Expression
1 simplr 731 . . . . 5  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  D  e.  RR )
2 0re 8838 . . . . . . . 8  |-  0  e.  RR
3 ltletr 8913 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  C  e.  RR  /\  D  e.  RR )  ->  (
( 0  <  C  /\  C  <_  D )  ->  0  <  D
) )
42, 3mp3an1 1264 . . . . . . 7  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( ( 0  < 
C  /\  C  <_  D )  ->  0  <  D ) )
54imp 418 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  0  <  D )
65gt0ne0d 9337 . . . . 5  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  D  =/=  0 )
71, 6rereccld 9587 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  (
1  /  D )  e.  RR )
8 gt0ne0 9239 . . . . . 6  |-  ( ( C  e.  RR  /\  0  <  C )  ->  C  =/=  0 )
9 rereccl 9478 . . . . . 6  |-  ( ( C  e.  RR  /\  C  =/=  0 )  -> 
( 1  /  C
)  e.  RR )
108, 9syldan 456 . . . . 5  |-  ( ( C  e.  RR  /\  0  <  C )  -> 
( 1  /  C
)  e.  RR )
1110ad2ant2r 727 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  (
1  /  C )  e.  RR )
12 recgt0 9600 . . . . . . 7  |-  ( ( D  e.  RR  /\  0  <  D )  -> 
0  <  ( 1  /  D ) )
131, 5, 12syl2anc 642 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  0  <  ( 1  /  D
) )
14 ltle 8910 . . . . . . 7  |-  ( ( 0  e.  RR  /\  ( 1  /  D
)  e.  RR )  ->  ( 0  < 
( 1  /  D
)  ->  0  <_  ( 1  /  D ) ) )
152, 7, 14sylancr 644 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  (
0  <  ( 1  /  D )  -> 
0  <_  ( 1  /  D ) ) )
1613, 15mpd 14 . . . . 5  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  0  <_  ( 1  /  D
) )
17 simprr 733 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  C  <_  D )
18 id 19 . . . . . . . 8  |-  ( ( C  e.  RR  /\  0  <  C )  -> 
( C  e.  RR  /\  0  <  C ) )
1918ad2ant2r 727 . . . . . . 7  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  ( C  e.  RR  /\  0  <  C ) )
20 lerec 9638 . . . . . . 7  |-  ( ( ( C  e.  RR  /\  0  <  C )  /\  ( D  e.  RR  /\  0  < 
D ) )  -> 
( C  <_  D  <->  ( 1  /  D )  <_  ( 1  /  C ) ) )
2119, 1, 5, 20syl12anc 1180 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  ( C  <_  D  <->  ( 1  /  D )  <_ 
( 1  /  C
) ) )
2217, 21mpbid 201 . . . . 5  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  (
1  /  D )  <_  ( 1  /  C ) )
2316, 22jca 518 . . . 4  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  (
0  <_  ( 1  /  D )  /\  ( 1  /  D
)  <_  ( 1  /  C ) ) )
247, 11, 23jca31 520 . . 3  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  (
( ( 1  /  D )  e.  RR  /\  ( 1  /  C
)  e.  RR )  /\  ( 0  <_ 
( 1  /  D
)  /\  ( 1  /  D )  <_ 
( 1  /  C
) ) ) )
25 simplll 734 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  ->  A  e.  RR )
26 simplrl 736 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
0  <_  A )
27 simpllr 735 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  ->  B  e.  RR )
2825, 26, 27jca31 520 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR ) )
29 simprll 738 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( 1  /  D
)  e.  RR )
30 simprrl 740 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
0  <_  ( 1  /  D ) )
3129, 30jca 518 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( ( 1  /  D )  e.  RR  /\  0  <_  ( 1  /  D ) ) )
32 simprlr 739 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( 1  /  C
)  e.  RR )
3328, 31, 32jca32 521 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( ( 1  /  D )  e.  RR  /\  0  <_  ( 1  /  D ) )  /\  ( 1  /  C )  e.  RR ) ) )
34 simplrr 737 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  ->  A  <_  B )
35 simprrr 741 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( 1  /  D
)  <_  ( 1  /  C ) )
3634, 35jca 518 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( A  <_  B  /\  ( 1  /  D
)  <_  ( 1  /  C ) ) )
37 lemul12a 9614 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( ( 1  /  D )  e.  RR  /\  0  <_  ( 1  /  D ) )  /\  ( 1  /  C )  e.  RR ) )  ->  (
( A  <_  B  /\  ( 1  /  D
)  <_  ( 1  /  C ) )  ->  ( A  x.  ( 1  /  D
) )  <_  ( B  x.  ( 1  /  C ) ) ) )
3833, 36, 37sylc 56 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( ( 1  /  D )  e.  RR  /\  (
1  /  C )  e.  RR )  /\  ( 0  <_  (
1  /  D )  /\  ( 1  /  D )  <_  (
1  /  C ) ) ) )  -> 
( A  x.  (
1  /  D ) )  <_  ( B  x.  ( 1  /  C
) ) )
3924, 38sylan2 460 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  x.  ( 1  /  D
) )  <_  ( B  x.  ( 1  /  C ) ) )
40 recn 8827 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
4140adantr 451 . . . . 5  |-  ( ( A  e.  RR  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  A  e.  CC )
42 recn 8827 . . . . . . 7  |-  ( D  e.  RR  ->  D  e.  CC )
4342ad2antlr 707 . . . . . 6  |-  ( ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  < 
C  /\  C  <_  D ) )  ->  D  e.  CC )
4443adantl 452 . . . . 5  |-  ( ( A  e.  RR  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  D  e.  CC )
456adantl 452 . . . . 5  |-  ( ( A  e.  RR  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  D  =/=  0 )
4641, 44, 45divrecd 9539 . . . 4  |-  ( ( A  e.  RR  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  =  ( A  x.  ( 1  /  D ) ) )
4746adantlr 695 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  =  ( A  x.  ( 1  /  D ) ) )
4847adantlr 695 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  =  ( A  x.  ( 1  /  D ) ) )
49 recn 8827 . . . . . . . 8  |-  ( B  e.  RR  ->  B  e.  CC )
5049adantr 451 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  B  e.  CC )
51 recn 8827 . . . . . . . 8  |-  ( C  e.  RR  ->  C  e.  CC )
5251ad2antrl 708 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  e.  CC )
538adantl 452 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  =/=  0 )
5450, 52, 53divrecd 9539 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( B  /  C )  =  ( B  x.  ( 1  /  C ) ) )
5554adantrrr 705 . . . . 5  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  ( 0  <  C  /\  C  <_  D ) ) )  ->  ( B  /  C )  =  ( B  x.  (
1  /  C ) ) )
5655adantrlr 703 . . . 4  |-  ( ( B  e.  RR  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( B  /  C )  =  ( B  x.  ( 1  /  C ) ) )
5756adantll 694 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( B  /  C )  =  ( B  x.  ( 1  /  C ) ) )
5857adantlr 695 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( B  /  C )  =  ( B  x.  ( 1  /  C ) ) )
5939, 48, 583brtr4d 4053 1  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  <_  ( B  /  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    < clt 8867    <_ cle 8868    / cdiv 9423
This theorem is referenced by:  lediv2a  9650  lediv12ad  10445  stoweidlem1  27750
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424
  Copyright terms: Public domain W3C validator