MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv23 Structured version   Unicode version

Theorem lediv23 9903
Description: Swap denominator with other side of 'less than or equal to'. (Contributed by NM, 30-May-2005.)
Assertion
Ref Expression
lediv23  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( A  /  B )  <_  C  <->  ( A  /  C )  <_  B ) )

Proof of Theorem lediv23
StepHypRef Expression
1 simpl 445 . . . . . . 7  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B  e.  RR )
2 gt0ne0 9494 . . . . . . 7  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B  =/=  0 )
31, 2jca 520 . . . . . 6  |-  ( ( B  e.  RR  /\  0  <  B )  -> 
( B  e.  RR  /\  B  =/=  0 ) )
4 redivcl 9734 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  =/=  0 )  ->  ( A  /  B )  e.  RR )
543expb 1155 . . . . . 6  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  B  =/=  0 ) )  ->  ( A  /  B )  e.  RR )
63, 5sylan2 462 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  /  B )  e.  RR )
763adant3 978 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  C  e.  RR )  ->  ( A  /  B )  e.  RR )
8 simp3 960 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  C  e.  RR )  ->  C  e.  RR )
9 simp2 959 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  C  e.  RR )  ->  ( B  e.  RR  /\  0  < 
B ) )
10 lemul1 9863 . . . 4  |-  ( ( ( A  /  B
)  e.  RR  /\  C  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( ( A  /  B )  <_  C  <->  ( ( A  /  B
)  x.  B )  <_  ( C  x.  B ) ) )
117, 8, 9, 10syl3anc 1185 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  C  e.  RR )  ->  ( ( A  /  B )  <_  C 
<->  ( ( A  /  B )  x.  B
)  <_  ( C  x.  B ) ) )
12113adant3r 1182 . 2  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( A  /  B )  <_  C  <->  ( ( A  /  B
)  x.  B )  <_  ( C  x.  B ) ) )
13 recn 9081 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
1413adantr 453 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  A  e.  CC )
15 recn 9081 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
1615ad2antrl 710 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B  e.  CC )
172adantl 454 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B  =/=  0 )
1814, 16, 17divcan1d 9792 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  x.  B )  =  A )
19183adant3 978 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( A  /  B )  x.  B
)  =  A )
2019breq1d 4223 . 2  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( ( A  /  B )  x.  B )  <_  ( C  x.  B )  <->  A  <_  ( C  x.  B ) ) )
21 remulcl 9076 . . . . . . . 8  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  x.  B
)  e.  RR )
2221ancoms 441 . . . . . . 7  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  x.  B
)  e.  RR )
2322adantrr 699 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( C  x.  B )  e.  RR )
24233adant1 976 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( C  x.  B
)  e.  RR )
25 lediv1 9876 . . . . 5  |-  ( ( A  e.  RR  /\  ( C  x.  B
)  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <_  ( C  x.  B
)  <->  ( A  /  C )  <_  (
( C  x.  B
)  /  C ) ) )
2624, 25syld3an2 1232 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  ( C  x.  B )  <->  ( A  /  C )  <_  ( ( C  x.  B )  /  C ) ) )
27 recn 9081 . . . . . . . . 9  |-  ( C  e.  RR  ->  C  e.  CC )
2827adantr 453 . . . . . . . 8  |-  ( ( C  e.  RR  /\  0  <  C )  ->  C  e.  CC )
29 gt0ne0 9494 . . . . . . . 8  |-  ( ( C  e.  RR  /\  0  <  C )  ->  C  =/=  0 )
3028, 29jca 520 . . . . . . 7  |-  ( ( C  e.  RR  /\  0  <  C )  -> 
( C  e.  CC  /\  C  =/=  0 ) )
31 divcan3 9703 . . . . . . . 8  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  (
( C  x.  B
)  /  C )  =  B )
32313expb 1155 . . . . . . 7  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  ( ( C  x.  B )  /  C )  =  B )
3315, 30, 32syl2an 465 . . . . . 6  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( C  x.  B )  /  C )  =  B )
34333adant1 976 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( C  x.  B )  /  C
)  =  B )
3534breq2d 4225 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  /  C )  <_  (
( C  x.  B
)  /  C )  <-> 
( A  /  C
)  <_  B )
)
3626, 35bitrd 246 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  ( C  x.  B )  <->  ( A  /  C )  <_  B ) )
37363adant2r 1180 . 2  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( A  <_  ( C  x.  B )  <->  ( A  /  C )  <_  B ) )
3812, 20, 373bitrd 272 1  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  < 
C ) )  -> 
( ( A  /  B )  <_  C  <->  ( A  /  C )  <_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2600   class class class wbr 4213  (class class class)co 6082   CCcc 8989   RRcr 8990   0cc0 8991    x. cmul 8996    < clt 9121    <_ cle 9122    / cdiv 9678
This theorem is referenced by:  lediv23d  10706  pntlemj  21298  minvecolem4  22383  stoweidlem36  27762
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-br 4214  df-opab 4268  df-mpt 4269  df-id 4499  df-po 4504  df-so 4505  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-riota 6550  df-er 6906  df-en 7111  df-dom 7112  df-sdom 7113  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679
  Copyright terms: Public domain W3C validator