MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lediv2a Structured version   Unicode version

Theorem lediv2a 9904
Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
Assertion
Ref Expression
lediv2a  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  A  <_  B )  -> 
( C  /  B
)  <_  ( C  /  A ) )

Proof of Theorem lediv2a
StepHypRef Expression
1 pm3.2 435 . . . . . . 7  |-  ( C  e.  RR  ->  ( C  e.  RR  ->  ( C  e.  RR  /\  C  e.  RR )
) )
21pm2.43i 45 . . . . . 6  |-  ( C  e.  RR  ->  ( C  e.  RR  /\  C  e.  RR ) )
32adantr 452 . . . . 5  |-  ( ( C  e.  RR  /\  0  <_  C )  -> 
( C  e.  RR  /\  C  e.  RR ) )
4 leid 9169 . . . . . . 7  |-  ( C  e.  RR  ->  C  <_  C )
54anim2i 553 . . . . . 6  |-  ( ( 0  <_  C  /\  C  e.  RR )  ->  ( 0  <_  C  /\  C  <_  C ) )
65ancoms 440 . . . . 5  |-  ( ( C  e.  RR  /\  0  <_  C )  -> 
( 0  <_  C  /\  C  <_  C ) )
73, 6jca 519 . . . 4  |-  ( ( C  e.  RR  /\  0  <_  C )  -> 
( ( C  e.  RR  /\  C  e.  RR )  /\  (
0  <_  C  /\  C  <_  C ) ) )
87ad2antlr 708 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  A  <_  B )  -> 
( ( C  e.  RR  /\  C  e.  RR )  /\  (
0  <_  C  /\  C  <_  C ) ) )
983adantl2 1114 . 2  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  A  <_  B )  -> 
( ( C  e.  RR  /\  C  e.  RR )  /\  (
0  <_  C  /\  C  <_  C ) ) )
10 id 20 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  e.  RR  /\  B  e.  RR ) )
1110ad2ant2r 728 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
( A  e.  RR  /\  B  e.  RR ) )
1211adantr 452 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( B  e.  RR  /\  0  <  B ) )  /\  A  <_  B )  -> 
( A  e.  RR  /\  B  e.  RR ) )
13 simplr 732 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  < 
B ) )  -> 
0  <  A )
1413anim1i 552 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( B  e.  RR  /\  0  <  B ) )  /\  A  <_  B )  -> 
( 0  <  A  /\  A  <_  B ) )
1512, 14jca 519 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( B  e.  RR  /\  0  <  B ) )  /\  A  <_  B )  -> 
( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <  A  /\  A  <_  B ) ) )
16153adantl3 1115 . 2  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  A  <_  B )  -> 
( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <  A  /\  A  <_  B ) ) )
17 lediv12a 9903 . 2  |-  ( ( ( ( C  e.  RR  /\  C  e.  RR )  /\  (
0  <_  C  /\  C  <_  C ) )  /\  ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <  A  /\  A  <_  B ) ) )  ->  ( C  /  B )  <_  ( C  /  A ) )
189, 16, 17syl2anc 643 1  |-  ( ( ( ( A  e.  RR  /\  0  < 
A )  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  A  <_  B )  -> 
( C  /  B
)  <_  ( C  /  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1725   class class class wbr 4212  (class class class)co 6081   RRcr 8989   0cc0 8990    < clt 9120    <_ cle 9121    / cdiv 9677
This theorem is referenced by:  lediv2ad  10670  dchrisum0lem1b  21209  pntrmax  21258
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678
  Copyright terms: Public domain W3C validator