MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivmulOLD Structured version   Unicode version

Theorem ledivmulOLD 9876
Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ledivmulOLD  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  0  <  B )  ->  ( ( A  /  B )  <_  C 
<->  A  <_  ( B  x.  C ) ) )

Proof of Theorem ledivmulOLD
StepHypRef Expression
1 simp1 957 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
2 remulcl 9067 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C
)  e.  RR )
323adant1 975 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C )  e.  RR )
4 simp2 958 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
51, 3, 43jca 1134 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  e.  RR  /\  ( B  x.  C )  e.  RR  /\  B  e.  RR ) )
6 simpl1 960 . . . 4  |-  ( ( ( A  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  B  e.  RR )  /\  0  <  B )  ->  A  e.  RR )
7 simpl2 961 . . . 4  |-  ( ( ( A  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  B  e.  RR )  /\  0  <  B )  ->  ( B  x.  C )  e.  RR )
8 simp3 959 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
9 id 20 . . . . 5  |-  ( 0  <  B  ->  0  <  B )
108, 9anim12i 550 . . . 4  |-  ( ( ( A  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  B  e.  RR )  /\  0  <  B )  ->  ( B  e.  RR  /\  0  < 
B ) )
11 lediv1 9867 . . . 4  |-  ( ( A  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  <_  ( B  x.  C
)  <->  ( A  /  B )  <_  (
( B  x.  C
)  /  B ) ) )
126, 7, 10, 11syl3anc 1184 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  B  e.  RR )  /\  0  <  B )  ->  ( A  <_ 
( B  x.  C
)  <->  ( A  /  B )  <_  (
( B  x.  C
)  /  B ) ) )
135, 12sylan 458 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  0  <  B )  ->  ( A  <_ 
( B  x.  C
)  <->  ( A  /  B )  <_  (
( B  x.  C
)  /  B ) ) )
14 gt0ne0 9485 . . . . . . . 8  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B  =/=  0 )
1514ex 424 . . . . . . 7  |-  ( B  e.  RR  ->  (
0  <  B  ->  B  =/=  0 ) )
1615adantr 452 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( 0  <  B  ->  B  =/=  0 ) )
17 recn 9072 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
18 recn 9072 . . . . . . 7  |-  ( C  e.  RR  ->  C  e.  CC )
19 divcan3 9694 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  (
( B  x.  C
)  /  B )  =  C )
20193com12 1157 . . . . . . . 8  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  B  =/=  0 )  ->  (
( B  x.  C
)  /  B )  =  C )
21203expia 1155 . . . . . . 7  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  =/=  0  ->  ( ( B  x.  C )  /  B
)  =  C ) )
2217, 18, 21syl2an 464 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  =/=  0  ->  ( ( B  x.  C )  /  B
)  =  C ) )
2316, 22syld 42 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( 0  <  B  ->  ( ( B  x.  C )  /  B
)  =  C ) )
24233adant1 975 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
0  <  B  ->  ( ( B  x.  C
)  /  B )  =  C ) )
2524imp 419 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  0  <  B )  ->  ( ( B  x.  C )  /  B )  =  C )
2625breq2d 4216 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  0  <  B )  ->  ( ( A  /  B )  <_ 
( ( B  x.  C )  /  B
)  <->  ( A  /  B )  <_  C
) )
2713, 26bitr2d 246 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  0  <  B )  ->  ( ( A  /  B )  <_  C 
<->  A  <_  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982    x. cmul 8987    < clt 9112    <_ cle 9113    / cdiv 9669
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670
  Copyright terms: Public domain W3C validator