MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivmulOLD Unicode version

Theorem ledivmulOLD 9630
Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ledivmulOLD  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  0  <  B )  ->  ( ( A  /  B )  <_  C 
<->  A  <_  ( B  x.  C ) ) )

Proof of Theorem ledivmulOLD
StepHypRef Expression
1 simp1 955 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  A  e.  RR )
2 remulcl 8822 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C
)  e.  RR )
323adant1 973 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C )  e.  RR )
4 simp2 956 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  B  e.  RR )
51, 3, 43jca 1132 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  e.  RR  /\  ( B  x.  C )  e.  RR  /\  B  e.  RR ) )
6 simpl1 958 . . . 4  |-  ( ( ( A  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  B  e.  RR )  /\  0  <  B )  ->  A  e.  RR )
7 simpl2 959 . . . 4  |-  ( ( ( A  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  B  e.  RR )  /\  0  <  B )  ->  ( B  x.  C )  e.  RR )
8 simp3 957 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  B  e.  RR )  ->  B  e.  RR )
9 id 19 . . . . 5  |-  ( 0  <  B  ->  0  <  B )
108, 9anim12i 549 . . . 4  |-  ( ( ( A  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  B  e.  RR )  /\  0  <  B )  ->  ( B  e.  RR  /\  0  < 
B ) )
11 lediv1 9621 . . . 4  |-  ( ( A  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  <_  ( B  x.  C
)  <->  ( A  /  B )  <_  (
( B  x.  C
)  /  B ) ) )
126, 7, 10, 11syl3anc 1182 . . 3  |-  ( ( ( A  e.  RR  /\  ( B  x.  C
)  e.  RR  /\  B  e.  RR )  /\  0  <  B )  ->  ( A  <_ 
( B  x.  C
)  <->  ( A  /  B )  <_  (
( B  x.  C
)  /  B ) ) )
135, 12sylan 457 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  0  <  B )  ->  ( A  <_ 
( B  x.  C
)  <->  ( A  /  B )  <_  (
( B  x.  C
)  /  B ) ) )
14 gt0ne0 9239 . . . . . . . 8  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B  =/=  0 )
1514ex 423 . . . . . . 7  |-  ( B  e.  RR  ->  (
0  <  B  ->  B  =/=  0 ) )
1615adantr 451 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( 0  <  B  ->  B  =/=  0 ) )
17 recn 8827 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
18 recn 8827 . . . . . . 7  |-  ( C  e.  RR  ->  C  e.  CC )
19 divcan3 9448 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  (
( B  x.  C
)  /  B )  =  C )
20193com12 1155 . . . . . . . 8  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  B  =/=  0 )  ->  (
( B  x.  C
)  /  B )  =  C )
21203expia 1153 . . . . . . 7  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  =/=  0  ->  ( ( B  x.  C )  /  B
)  =  C ) )
2217, 18, 21syl2an 463 . . . . . 6  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  =/=  0  ->  ( ( B  x.  C )  /  B
)  =  C ) )
2316, 22syld 40 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( 0  <  B  ->  ( ( B  x.  C )  /  B
)  =  C ) )
24233adant1 973 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
0  <  B  ->  ( ( B  x.  C
)  /  B )  =  C ) )
2524imp 418 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  0  <  B )  ->  ( ( B  x.  C )  /  B )  =  C )
2625breq2d 4035 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  0  <  B )  ->  ( ( A  /  B )  <_ 
( ( B  x.  C )  /  B
)  <->  ( A  /  B )  <_  C
) )
2713, 26bitr2d 245 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  /\  0  <  B )  ->  ( ( A  /  B )  <_  C 
<->  A  <_  ( B  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   class class class wbr 4023  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737    x. cmul 8742    < clt 8867    <_ cle 8868    / cdiv 9423
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424
  Copyright terms: Public domain W3C validator