MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leexp2r Unicode version

Theorem leexp2r 11175
Description: Weak ordering relationship for exponentiation. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Assertion
Ref Expression
leexp2r  |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) )

Proof of Theorem leexp2r
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5882 . . . . . . . 8  |-  ( j  =  M  ->  ( A ^ j )  =  ( A ^ M
) )
21breq1d 4049 . . . . . . 7  |-  ( j  =  M  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ M )  <_  ( A ^ M ) ) )
32imbi2d 307 . . . . . 6  |-  ( j  =  M  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) ) ) )
4 oveq2 5882 . . . . . . . 8  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
54breq1d 4049 . . . . . . 7  |-  ( j  =  k  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ k )  <_ 
( A ^ M
) ) )
65imbi2d 307 . . . . . 6  |-  ( j  =  k  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
k )  <_  ( A ^ M ) ) ) )
7 oveq2 5882 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
87breq1d 4049 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) )
98imbi2d 307 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
( k  +  1 ) )  <_  ( A ^ M ) ) ) )
10 oveq2 5882 . . . . . . . 8  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
1110breq1d 4049 . . . . . . 7  |-  ( j  =  N  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ N )  <_  ( A ^ M ) ) )
1211imbi2d 307 . . . . . 6  |-  ( j  =  N  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
13 reexpcl 11136 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  RR )
1413adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  e.  RR )
1514leidd 9355 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) )
1615a1i 10 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( ( A  e.  RR  /\  M  e. 
NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) ) )
17 simprll 738 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  e.  RR )
18 1re 8853 . . . . . . . . . . . 12  |-  1  e.  RR
1918a1i 10 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  1  e.  RR )
20 simprlr 739 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  M  e.  NN0 )
21 simpl 443 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  k  e.  ( ZZ>= `  M )
)
22 eluznn0 10304 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
2320, 21, 22syl2anc 642 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  k  e.  NN0 )
24 reexpcl 11136 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  RR )
2517, 23, 24syl2anc 642 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  e.  RR )
26 simprrl 740 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  0  <_  A )
27 expge0 11154 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0  /\  0  <_  A )  ->  0  <_  ( A ^ k
) )
2817, 23, 26, 27syl3anc 1182 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  0  <_  ( A ^ k
) )
29 simprrr 741 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  <_  1 )
3017, 19, 25, 28, 29lemul2ad 9713 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  x.  A )  <_  ( ( A ^ k )  x.  1 ) )
3117recnd 8877 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  e.  CC )
32 expp1 11126 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
3331, 23, 32syl2anc 642 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  =  ( ( A ^
k )  x.  A
) )
3425recnd 8877 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  e.  CC )
3534mulid1d 8868 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  x.  1 )  =  ( A ^
k ) )
3635eqcomd 2301 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  =  ( ( A ^
k )  x.  1 ) )
3730, 33, 363brtr4d 4069 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ k
) )
38 peano2nn0 10020 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
3923, 38syl 15 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
k  +  1 )  e.  NN0 )
40 reexpcl 11136 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( k  +  1 )  e.  NN0 )  ->  ( A ^ (
k  +  1 ) )  e.  RR )
4117, 39, 40syl2anc 642 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  e.  RR )
4213ad2antrl 708 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ M )  e.  RR )
43 letr 8930 . . . . . . . . . 10  |-  ( ( ( A ^ (
k  +  1 ) )  e.  RR  /\  ( A ^ k )  e.  RR  /\  ( A ^ M )  e.  RR )  ->  (
( ( A ^
( k  +  1 ) )  <_  ( A ^ k )  /\  ( A ^ k )  <_  ( A ^ M ) )  -> 
( A ^ (
k  +  1 ) )  <_  ( A ^ M ) ) )
4441, 25, 42, 43syl3anc 1182 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( ( A ^
( k  +  1 ) )  <_  ( A ^ k )  /\  ( A ^ k )  <_  ( A ^ M ) )  -> 
( A ^ (
k  +  1 ) )  <_  ( A ^ M ) ) )
4537, 44mpand 656 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  <_  ( A ^ M )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) )
4645ex 423 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( ( A ^ k )  <_ 
( A ^ M
)  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) ) )
4746a2d 23 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ( A  e.  RR  /\  M  e. 
NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
k )  <_  ( A ^ M ) )  ->  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) ) )
483, 6, 9, 12, 16, 47uzind4 10292 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) ) )
4948exp3a 425 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( A  e.  RR  /\  M  e.  NN0 )  ->  (
( 0  <_  A  /\  A  <_  1 )  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
5049com12 27 . . 3  |-  ( ( A  e.  RR  /\  M  e.  NN0 )  -> 
( N  e.  (
ZZ>= `  M )  -> 
( ( 0  <_  A  /\  A  <_  1
)  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
51503impia 1148 . 2  |-  ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (
0  <_  A  /\  A  <_  1 )  -> 
( A ^ N
)  <_  ( A ^ M ) ) )
5251imp 418 1  |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    <_ cle 8884   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   ^cexp 11120
This theorem is referenced by:  exple1  11177  leexp2rd  11294  wallispilem1  27917
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-seq 11063  df-exp 11121
  Copyright terms: Public domain W3C validator