MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leexp2r Structured version   Unicode version

Theorem leexp2r 11437
Description: Weak ordering relationship for exponentiation. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Assertion
Ref Expression
leexp2r  |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) )

Proof of Theorem leexp2r
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6089 . . . . . . . 8  |-  ( j  =  M  ->  ( A ^ j )  =  ( A ^ M
) )
21breq1d 4222 . . . . . . 7  |-  ( j  =  M  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ M )  <_  ( A ^ M ) ) )
32imbi2d 308 . . . . . 6  |-  ( j  =  M  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) ) ) )
4 oveq2 6089 . . . . . . . 8  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
54breq1d 4222 . . . . . . 7  |-  ( j  =  k  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ k )  <_ 
( A ^ M
) ) )
65imbi2d 308 . . . . . 6  |-  ( j  =  k  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
k )  <_  ( A ^ M ) ) ) )
7 oveq2 6089 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
87breq1d 4222 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) )
98imbi2d 308 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
( k  +  1 ) )  <_  ( A ^ M ) ) ) )
10 oveq2 6089 . . . . . . . 8  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
1110breq1d 4222 . . . . . . 7  |-  ( j  =  N  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ N )  <_  ( A ^ M ) ) )
1211imbi2d 308 . . . . . 6  |-  ( j  =  N  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
13 reexpcl 11398 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  RR )
1413adantr 452 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  e.  RR )
1514leidd 9593 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) )
1615a1i 11 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( ( A  e.  RR  /\  M  e. 
NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) ) )
17 simprll 739 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  e.  RR )
18 1re 9090 . . . . . . . . . . . 12  |-  1  e.  RR
1918a1i 11 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  1  e.  RR )
20 simprlr 740 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  M  e.  NN0 )
21 simpl 444 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  k  e.  ( ZZ>= `  M )
)
22 eluznn0 10546 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
2320, 21, 22syl2anc 643 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  k  e.  NN0 )
24 reexpcl 11398 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  RR )
2517, 23, 24syl2anc 643 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  e.  RR )
26 simprrl 741 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  0  <_  A )
27 expge0 11416 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0  /\  0  <_  A )  ->  0  <_  ( A ^ k
) )
2817, 23, 26, 27syl3anc 1184 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  0  <_  ( A ^ k
) )
29 simprrr 742 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  <_  1 )
3017, 19, 25, 28, 29lemul2ad 9951 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  x.  A )  <_  ( ( A ^ k )  x.  1 ) )
3117recnd 9114 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  e.  CC )
32 expp1 11388 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
3331, 23, 32syl2anc 643 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  =  ( ( A ^
k )  x.  A
) )
3425recnd 9114 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  e.  CC )
3534mulid1d 9105 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  x.  1 )  =  ( A ^
k ) )
3635eqcomd 2441 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  =  ( ( A ^
k )  x.  1 ) )
3730, 33, 363brtr4d 4242 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ k
) )
38 peano2nn0 10260 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
3923, 38syl 16 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
k  +  1 )  e.  NN0 )
40 reexpcl 11398 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( k  +  1 )  e.  NN0 )  ->  ( A ^ (
k  +  1 ) )  e.  RR )
4117, 39, 40syl2anc 643 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  e.  RR )
4213ad2antrl 709 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ M )  e.  RR )
43 letr 9167 . . . . . . . . . 10  |-  ( ( ( A ^ (
k  +  1 ) )  e.  RR  /\  ( A ^ k )  e.  RR  /\  ( A ^ M )  e.  RR )  ->  (
( ( A ^
( k  +  1 ) )  <_  ( A ^ k )  /\  ( A ^ k )  <_  ( A ^ M ) )  -> 
( A ^ (
k  +  1 ) )  <_  ( A ^ M ) ) )
4441, 25, 42, 43syl3anc 1184 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( ( A ^
( k  +  1 ) )  <_  ( A ^ k )  /\  ( A ^ k )  <_  ( A ^ M ) )  -> 
( A ^ (
k  +  1 ) )  <_  ( A ^ M ) ) )
4537, 44mpand 657 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  <_  ( A ^ M )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) )
4645ex 424 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( ( A ^ k )  <_ 
( A ^ M
)  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) ) )
4746a2d 24 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ( A  e.  RR  /\  M  e. 
NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
k )  <_  ( A ^ M ) )  ->  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) ) )
483, 6, 9, 12, 16, 47uzind4 10534 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) ) )
4948exp3a 426 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( A  e.  RR  /\  M  e.  NN0 )  ->  (
( 0  <_  A  /\  A  <_  1 )  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
5049com12 29 . . 3  |-  ( ( A  e.  RR  /\  M  e.  NN0 )  -> 
( N  e.  (
ZZ>= `  M )  -> 
( ( 0  <_  A  /\  A  <_  1
)  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
51503impia 1150 . 2  |-  ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (
0  <_  A  /\  A  <_  1 )  -> 
( A ^ N
)  <_  ( A ^ M ) ) )
5251imp 419 1  |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    <_ cle 9121   NN0cn0 10221   ZZcz 10282   ZZ>=cuz 10488   ^cexp 11382
This theorem is referenced by:  exple1  11439  leexp2rd  11556
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489  df-seq 11324  df-exp 11383
  Copyright terms: Public domain W3C validator