MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leibpilem1 Unicode version

Theorem leibpilem1 20236
Description: Lemma for leibpi 20238. (Contributed by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
leibpilem1  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( N  e.  NN  /\  ( ( N  - 
1 )  /  2
)  e.  NN0 )
)

Proof of Theorem leibpilem1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 elnn0 9967 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
21biimpi 186 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  e.  NN  \/  N  =  0 ) )
32ord 366 . . . . 5  |-  ( N  e.  NN0  ->  ( -.  N  e.  NN  ->  N  =  0 ) )
43con1d 116 . . . 4  |-  ( N  e.  NN0  ->  ( -.  N  =  0  ->  N  e.  NN )
)
54imp 418 . . 3  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  N  e.  NN )
65adantrr 697 . 2  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  ->  N  e.  NN )
7 nn0z 10046 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ZZ )
87adantr 451 . . . . . 6  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  N  e.  ZZ )
9 odd2np1 12587 . . . . . 6  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
108, 9syl 15 . . . . 5  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
11 zcn 10029 . . . . . . . . 9  |-  ( n  e.  ZZ  ->  n  e.  CC )
12 2cn 9816 . . . . . . . . . . . . 13  |-  2  e.  CC
13 mulcl 8821 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  n  e.  CC )  ->  ( 2  x.  n
)  e.  CC )
1412, 13mpan 651 . . . . . . . . . . . 12  |-  ( n  e.  CC  ->  (
2  x.  n )  e.  CC )
15 ax-1cn 8795 . . . . . . . . . . . 12  |-  1  e.  CC
16 pncan 9057 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  n
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
1714, 15, 16sylancl 643 . . . . . . . . . . 11  |-  ( n  e.  CC  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
1817oveq1d 5873 . . . . . . . . . 10  |-  ( n  e.  CC  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  ( ( 2  x.  n )  / 
2 ) )
19 2ne0 9829 . . . . . . . . . . 11  |-  2  =/=  0
20 divcan3 9448 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  n
)  /  2 )  =  n )
2112, 19, 20mp3an23 1269 . . . . . . . . . 10  |-  ( n  e.  CC  ->  (
( 2  x.  n
)  /  2 )  =  n )
2218, 21eqtrd 2315 . . . . . . . . 9  |-  ( n  e.  CC  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  n )
2311, 22syl 15 . . . . . . . 8  |-  ( n  e.  ZZ  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  n )
24 id 19 . . . . . . . 8  |-  ( n  e.  ZZ  ->  n  e.  ZZ )
2523, 24eqeltrd 2357 . . . . . . 7  |-  ( n  e.  ZZ  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  e.  ZZ )
26 oveq1 5865 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( N  - 
1 ) )
2726oveq1d 5873 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  ( ( N  -  1 )  / 
2 ) )
2827eleq1d 2349 . . . . . . 7  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( ( 2  x.  n )  +  1 )  - 
1 )  /  2
)  e.  ZZ  <->  ( ( N  -  1 )  /  2 )  e.  ZZ ) )
2925, 28syl5ibcom 211 . . . . . 6  |-  ( n  e.  ZZ  ->  (
( ( 2  x.  n )  +  1 )  =  N  -> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
3029rexlimiv 2661 . . . . 5  |-  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  ->  (
( N  -  1 )  /  2 )  e.  ZZ )
3110, 30syl6bi 219 . . . 4  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  ( -.  2  ||  N  ->  (
( N  -  1 )  /  2 )  e.  ZZ ) )
3231impr 602 . . 3  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( ( N  - 
1 )  /  2
)  e.  ZZ )
33 nnm1nn0 10005 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
346, 33syl 15 . . . . 5  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( N  -  1 )  e.  NN0 )
3534nn0red 10019 . . . 4  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( N  -  1 )  e.  RR )
3634nn0ge0d 10021 . . . 4  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
0  <_  ( N  -  1 ) )
37 2re 9815 . . . . 5  |-  2  e.  RR
3837a1i 10 . . . 4  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
2  e.  RR )
39 2pos 9828 . . . . 5  |-  0  <  2
4039a1i 10 . . . 4  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
0  <  2 )
41 divge0 9625 . . . 4  |-  ( ( ( ( N  - 
1 )  e.  RR  /\  0  <_  ( N  -  1 ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <_  ( ( N  -  1 )  /  2 ) )
4235, 36, 38, 40, 41syl22anc 1183 . . 3  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
0  <_  ( ( N  -  1 )  /  2 ) )
43 elnn0z 10036 . . 3  |-  ( ( ( N  -  1 )  /  2 )  e.  NN0  <->  ( ( ( N  -  1 )  /  2 )  e.  ZZ  /\  0  <_ 
( ( N  - 
1 )  /  2
) ) )
4432, 42, 43sylanbrc 645 . 2  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( ( N  - 
1 )  /  2
)  e.  NN0 )
456, 44jca 518 1  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( N  e.  NN  /\  ( ( N  - 
1 )  /  2
)  e.  NN0 )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024    || cdivides 12531
This theorem is referenced by:  leibpilem2  20237  leibpi  20238
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-dvds 12532
  Copyright terms: Public domain W3C validator