MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leibpilem1 Unicode version

Theorem leibpilem1 20648
Description: Lemma for leibpi 20650. (Contributed by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
leibpilem1  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( N  e.  NN  /\  ( ( N  - 
1 )  /  2
)  e.  NN0 )
)

Proof of Theorem leibpilem1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 elnn0 10156 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
21biimpi 187 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  e.  NN  \/  N  =  0 ) )
32ord 367 . . . . 5  |-  ( N  e.  NN0  ->  ( -.  N  e.  NN  ->  N  =  0 ) )
43con1d 118 . . . 4  |-  ( N  e.  NN0  ->  ( -.  N  =  0  ->  N  e.  NN )
)
54imp 419 . . 3  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  N  e.  NN )
65adantrr 698 . 2  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  ->  N  e.  NN )
7 nn0z 10237 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ZZ )
87adantr 452 . . . . . 6  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  N  e.  ZZ )
9 odd2np1 12836 . . . . . 6  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
108, 9syl 16 . . . . 5  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
11 zcn 10220 . . . . . . . . 9  |-  ( n  e.  ZZ  ->  n  e.  CC )
12 2cn 10003 . . . . . . . . . . . . 13  |-  2  e.  CC
13 mulcl 9008 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  n  e.  CC )  ->  ( 2  x.  n
)  e.  CC )
1412, 13mpan 652 . . . . . . . . . . . 12  |-  ( n  e.  CC  ->  (
2  x.  n )  e.  CC )
15 ax-1cn 8982 . . . . . . . . . . . 12  |-  1  e.  CC
16 pncan 9244 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  n
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
1714, 15, 16sylancl 644 . . . . . . . . . . 11  |-  ( n  e.  CC  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
1817oveq1d 6036 . . . . . . . . . 10  |-  ( n  e.  CC  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  ( ( 2  x.  n )  / 
2 ) )
19 2ne0 10016 . . . . . . . . . . 11  |-  2  =/=  0
20 divcan3 9635 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  n
)  /  2 )  =  n )
2112, 19, 20mp3an23 1271 . . . . . . . . . 10  |-  ( n  e.  CC  ->  (
( 2  x.  n
)  /  2 )  =  n )
2218, 21eqtrd 2420 . . . . . . . . 9  |-  ( n  e.  CC  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  n )
2311, 22syl 16 . . . . . . . 8  |-  ( n  e.  ZZ  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  n )
24 id 20 . . . . . . . 8  |-  ( n  e.  ZZ  ->  n  e.  ZZ )
2523, 24eqeltrd 2462 . . . . . . 7  |-  ( n  e.  ZZ  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  e.  ZZ )
26 oveq1 6028 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( N  - 
1 ) )
2726oveq1d 6036 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  ( ( N  -  1 )  / 
2 ) )
2827eleq1d 2454 . . . . . . 7  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( ( 2  x.  n )  +  1 )  - 
1 )  /  2
)  e.  ZZ  <->  ( ( N  -  1 )  /  2 )  e.  ZZ ) )
2925, 28syl5ibcom 212 . . . . . 6  |-  ( n  e.  ZZ  ->  (
( ( 2  x.  n )  +  1 )  =  N  -> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
3029rexlimiv 2768 . . . . 5  |-  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  ->  (
( N  -  1 )  /  2 )  e.  ZZ )
3110, 30syl6bi 220 . . . 4  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  ( -.  2  ||  N  ->  (
( N  -  1 )  /  2 )  e.  ZZ ) )
3231impr 603 . . 3  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( ( N  - 
1 )  /  2
)  e.  ZZ )
33 nnm1nn0 10194 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
346, 33syl 16 . . . . 5  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( N  -  1 )  e.  NN0 )
3534nn0red 10208 . . . 4  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( N  -  1 )  e.  RR )
3634nn0ge0d 10210 . . . 4  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
0  <_  ( N  -  1 ) )
37 2re 10002 . . . . 5  |-  2  e.  RR
3837a1i 11 . . . 4  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
2  e.  RR )
39 2pos 10015 . . . . 5  |-  0  <  2
4039a1i 11 . . . 4  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
0  <  2 )
41 divge0 9812 . . . 4  |-  ( ( ( ( N  - 
1 )  e.  RR  /\  0  <_  ( N  -  1 ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <_  ( ( N  -  1 )  /  2 ) )
4235, 36, 38, 40, 41syl22anc 1185 . . 3  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
0  <_  ( ( N  -  1 )  /  2 ) )
43 elnn0z 10227 . . 3  |-  ( ( ( N  -  1 )  /  2 )  e.  NN0  <->  ( ( ( N  -  1 )  /  2 )  e.  ZZ  /\  0  <_ 
( ( N  - 
1 )  /  2
) ) )
4432, 42, 43sylanbrc 646 . 2  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( ( N  - 
1 )  /  2
)  e.  NN0 )
456, 44jca 519 1  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( N  e.  NN  /\  ( ( N  - 
1 )  /  2
)  e.  NN0 )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2551   E.wrex 2651   class class class wbr 4154  (class class class)co 6021   CCcc 8922   RRcr 8923   0cc0 8924   1c1 8925    + caddc 8927    x. cmul 8929    < clt 9054    <_ cle 9055    - cmin 9224    / cdiv 9610   NNcn 9933   2c2 9982   NN0cn0 10154   ZZcz 10215    || cdivides 12780
This theorem is referenced by:  leibpilem2  20649  leibpi  20650
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-n0 10155  df-z 10216  df-dvds 12781
  Copyright terms: Public domain W3C validator